A fibrous herringbone-modified helicoidal architecture is identified within the exocuticle of an impact-resistant crustacean appendage. This previously unreported composite microstructure, which features highly textured apatite mineral templated by an alpha-chitin matrix, provides enhanced stress redistribution and energy absorption over the traditional helicoidal design under compressive loading. Nanoscale toughening mechanisms are also identified using high load nanoindentation and in-situ TEM picoindentation.
A Sinusoidally-Architected Helicoidal BiocompositeBy Nicholas A. Yaraghi, Nicolás Guarín-Zapata, Lessa K. Grunenfelder, Eric Hintsala, Sanjit Bhowmick, Jon M. Hiller, Mark Betts, Edward L. Principe, Jae-Young Jung, Leigh Sheppard, Richard Wuhrer, Joanna McKittrick, Pablo D. Zavattieri Keywords: (Composites, Toughness, Impact, Biomineral, Ultrastructure) Submitted to 3 Biologically mineralized composites offer inspiration for the design of next generation structural materials due to their low density, high strength and toughness currently unmatched by engineering technologies. [1][2][3][4][5][6][7][8][9] Such properties are based on the ability for the organism to utilize structural organics and acidic proteins to guide and control the mineralization process to yield hierarchical architectures with well-defined compositional gradients.One notable example is the highly developed raptorial appendage, or dactyl, of the stomatopods, a group of aggressive marine crustaceans that use these structures for feeding upon hard-shelled and soft-bodied prey. [10][11][12][13][14] The dactyls of the "smashers", those that feed primarily on hard-shelled prey, (see Figure 1A) takes the form of a bulbous club ( Figure 1B), which is used to smash through mollusk shells, crab exoskeletons, and other tough mineralized structures with tremendous force and speed. [11][12][13][14][15][16] Achieving accelerations over 10,000g and reaching speeds of 23 m/s from rest, the dactyl strike is recognized as one of the fastest and most powerful impacting events observed in Nature. [11,12] The club is capable of delivering and subsequently enduring repetitive impact forces up to 1500 N and cavitation stresses without catastrophically failing, demonstrating its utility as an exceptionally damage-tolerant natural material.The origins of such a mechanical response lie in the structural design. Previous work identified the club as a multi-regional composite material containing an organic matrix composed of alpha-chitin fibers mineralized by amorphous forms of calcium carbonate and calcium phosphate as well as crystalline apatite. [17,18] These investigations revealed mechanisms responsible for providing damage-tolerance and impact-resistance to the club, which were largely attributed to the interior of the club (periodic region), identified as the primary energy-absorbing layer. [17,18] The combination of soft polymeric nanofibers and stiffer mineral provides a periodic modulus mismatch leading to crack deflection, which in co...