Propionyl-CoA carboxylase (PCC) is the enzyme which catalyzes the carboxylation of propionyl-CoA to methylmalonyl-CoA and is encoded by the genes PCCA and PCCB to form a hetero-dodecamer. Dysfunction of PCC leads to the inherited metabolic disorder propionic acidemia, which can result in an affected individual presenting with metabolic acidosis, hyperammonemia, lethargy, vomiting and sometimes coma and death if not treated. Individuals with propionic acidemia also have a number of long term complications resulting from the dysfunction of the PCC enzyme. Here we present an overview of the current knowledge about the structure and function of PCC. We review an updated list of human variants which are published and provide an overview of the disease.
Propionic Acidemia or aciduria is an intoxication-type disorder of organic metabolism. Patients deteriorate in times of increased metabolic demand and subsequent catabolism. Metabolic decompensation can manifest with lethargy, vomiting, coma and death if not appropriately treated. On January 28-30, 2011 in Washington, D.C., Children's National Medical Center hosted a group of clinicians, scientists and parental group representatives to design recommendations for acute management of individuals with Propionic Acidemia. Although many of the recommendations are geared towards the previously undiagnosed neonate, the recommendations for a severely metabolically decompensated individual are applicable to any known patient as well. Initial management is critical for prevention of morbidity and mortality. The following manuscript provides recommendations for initial treatment and evaluation, a discussion of issues concerning transport to a metabolic center (if patient presents to a non-metabolic center), acceleration of management and preparation for discharge.
Hyperammonaemia in children can lead to grave consequences in the form of cerebral oedema, severe neurological impairment and even death. In infants and children, common causes of hyperammonaemia include urea cycle disorders or organic acidaemias. Few studies have assessed the role of extracorporeal therapies in the management of hyperammonaemia in neonates and children. Moreover, consensus guidelines are lacking for the use of non-kidney replacement therapy (NKRT) and kidney replacement therapies (KRTs, including peritoneal dialysis, continuous KRT, haemodialysis and hybrid therapy) to manage hyperammonaemia in neonates and children. Prompt treatment with KRT and/or NKRT, the choice of which depends on the ammonia concentrations and presenting symptoms of the patient, is crucial. This expert Consensus Statement presents recommendations for the management of hyperammonaemia requiring KRT in paediatric populations. Additional studies are required to strengthen these recommendations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.