PURPOSE. Cigarette smoking has been implicated in the pathogenesis of AMD. Integrin dysfunctions have been associated with AMD. Herein, we investigate the effect of risuteganib (RSG), an integrin regulator, on RPE cell injury induced by hydroquinone (HQ), an important oxidant in cigarette smoke. METHODS. Cultured human RPE cells were treated with HQ in the presence or absence of RSG. Cell death, mitochondrial respiration, reactive oxygen species production, and mitochondrial membrane potential were measured by flow cytometry, XFe24 analyzer, and fluorescence plate reader, respectively. Whole transcriptome analysis and gene expression were analyzed by Illumina RNA sequencing and quantitative PCR, respectively. F-actin aggregation was visualized with phalloidin. Levels of heme oxygenase-1, P38, and heat shock protein 27 proteins were measured by Western blot. RESULTS. HQ induced necrosis and apoptosis, decreased mitochondrial bioenergetics, increased reactive oxygen species levels, decreased mitochondrial membrane potential, increased F-actin aggregates, and induced phosphorylation of P38 and heat shock protein 27. HQ, but not RSG alone, induced substantial transcriptome changes that were regulated by RSG cotreatment. RSG cotreatment significantly protected against HQ-induced necrosis and apoptosis, prevented HQ-reduced mitochondrial bioenergetics, decreased HQ-induced reactive oxygen species production, improved HQ-disrupted mitochondrial membrane potential, reduced F-actin aggregates, decreased phosphorylation of P38 and heat shock protein 27, and further upregulated HQ-induced heme oxygenase-1 protein levels. CONCLUSIONS. RSG has no detectable adverse effects on healthy RPE cells, whereas RSG cotreatment protects against HQ-induced injury, mitochondrial dysfunction, and actin reorganization, suggesting a potential role for RSG therapy to treat retinal diseases such as AMD.
PURPOSE. Oxidative stress in retinal pigment epithelial (RPE) cells is associated with agerelated macular degeneration (AMD). Resveratrol exerts a range of protective biologic effects, but its mechanism(s) are not well understood. The aim of this study was to investigate how resveratrol could affect biologic pathways in oxidatively stressed RPE cells. METHODS. Cultured human RPE cells were treated with hydroquinone (HQ) in the presence or absence of resveratrol. Cell viability was determined with WST-1 reagent and trypan blue exclusion. Mitochondrial function was measured with the XFe24 Extracellular Flux Analyzer. Expression of heme oxygenase-1 (HO-1) and glutamate cysteine ligase catalytic subunit was evaluated by qPCR. Endoplasmic reticulum stress protein expression was measured by Western blot. Potential reactions between HQ and resveratrol were investigated using high-performance liquid chromatography mass spectrometry with resveratrol and additional oxidants for comparison. RESULTS. RPE cells treated with the combination of resveratrol and HQ had significantly increased cell viability and improved mitochondrial function when compared with HQtreated cells alone. Resveratrol in combination with HQ significantly upregulated HO-1 mRNA expression above that of HQ-treated cells alone. Resveratrol in combination with HQ upregulated C/EBP homologous protein and spliced X-box binding protein 1. Additionally, new compounds were formed from resveratrol and HQ coincubation. CONCLUSIONS. Resveratrol can ameliorate HQ-induced toxicity in RPE cells through improved mitochondrial bioenergetics, upregulated antioxidant genes, stimulated unfolded protein response, and direct oxidant interaction. This study provides insight into pathways through which resveratrol can protect RPE cells from oxidative damage, a factor thought to contribute to AMD pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.