Methylammonium lead halide perovskites are attracting intense interest as promising materials for next-generation solar cells, but serious issues related to long-term stability need to be addressed. Perovskite films based on CH3NH3PbI3 undergo rapid degradation when exposed to oxygen and light. Here, we report mechanistic insights into this oxygen-induced photodegradation from a range of experimental and computational techniques. We find fast oxygen diffusion into CH3NH3PbI3 films is accompanied by photo-induced formation of highly reactive superoxide species. Perovskite films composed of small crystallites show higher yields of superoxide and lower stability. Ab initio simulations indicate that iodide vacancies are the preferred sites in mediating the photo-induced formation of superoxide species from oxygen. Thin-film passivation with iodide salts is shown to enhance film and device stability. The understanding of degradation phenomena gained from this study is important for the future design and optimization of stable perovskite solar cells.
Here, we demonstrate that light and oxygen-induced degradation is the main reason for the low operational stability of methylammonium lead triiodide (MeNH3PbI3) perovskite solar cells exposed to ambient conditions.
In this paper we report on the influence of light and oxygen on the stability of CH3 NH3 PbI3 perovskite-based photoactive layers. When exposed to both light and dry air the mp-Al2 O3 /CH3 NH3 PbI3 photoactive layers rapidly decompose yielding methylamine, PbI2 , and I2 as products. We show that this degradation is initiated by the reaction of superoxide (O2 (-) ) with the methylammonium moiety of the perovskite absorber. Fluorescent molecular probe studies indicate that the O2 (-) species is generated by the reaction of photoexcited electrons in the perovskite and molecular oxygen. We show that the yield of O2 (-) generation is significantly reduced when the mp-Al2 O3 film is replaced with an mp-TiO2 electron extraction and transport layer. The present findings suggest that replacing the methylammonium component in CH3 NH3 PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability.
In this paper we report on the influence of light and oxygen on the stability of CH3NH3PbI3 perovskite‐based photoactive layers. When exposed to both light and dry air the mp‐Al2O3/CH3NH3PbI3 photoactive layers rapidly decompose yielding methylamine, PbI2, and I2 as products. We show that this degradation is initiated by the reaction of superoxide (O2−) with the methylammonium moiety of the perovskite absorber. Fluorescent molecular probe studies indicate that the O2− species is generated by the reaction of photoexcited electrons in the perovskite and molecular oxygen. We show that the yield of O2− generation is significantly reduced when the mp‐Al2O3 film is replaced with an mp‐TiO2 electron extraction and transport layer. The present findings suggest that replacing the methylammonium component in CH3NH3PbI3 to a species without acid protons could improve tolerance to oxygen and enhance stability.
With
the emergence of nonfullerene electron acceptors resulting
in further breakthroughs in the performance of organic solar cells,
there is now an urgent need to understand their degradation mechanisms
in order to improve their intrinsic stability through better material
design. In this study, we present quantitative evidence for a common
root cause of light-induced degradation of polymer:nonfullerene and
polymer:fullerene organic solar cells in air, namely, a fast photo-oxidation
process of the photoactive materials mediated by the formation of
superoxide radical ions, whose yield is found to be strongly controlled
by the lowest unoccupied molecular orbital (LUMO) levels of the electron
acceptors used. Our results elucidate the general relevance of this
degradation mechanism to both polymer:fullerene and polymer:nonfullerene
blends and highlight the necessity of designing electron acceptor
materials with sufficient electron affinities to overcome this challenge,
thereby paving the way toward achieving long-term solar cell stability
with minimal device encapsulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.