On‐chip stimulated Brillouin scattering (SBS) in arsenic trisulfide (As2S3) planar waveguides lead to a range of outstanding demonstrations in microwave photonics signal generation and processing. However, the lack of other integrated functionalities, high back reflections, and large in‐ and out‐fiber coupling losses in high index contrast waveguides cause a number of serious impairments and lessen the applicability of microwave photonic devices. In this report, a hybrid integration scheme is demonstrated where As2S3 waveguides optimized for SBS gain are coupled with very low losses via a vertical taper to a high index contrast and versatile germanosilicate (Ge:SiO2) platform. The Ge:SiO2 waveguide is optimally mode‐matched to commercially available high numerical aperture optical fiber to achieve very low coupling losses. The structure has very low back reflection due to the adiabatic nature of the taper and negligible refractive index difference across the fiber‐chip interface. The hybrid architecture exhibits a similar Brillouin gain coefficient to its monolithic counterpart but with an improvement of >3 dB/facet fiber‐to‐chip loss and >20 dB reduction in facet reflectivity. The hybrid structures demonstrated will bring chalcogenide‐based chip scale SBS devices closer to practical application.
Microwave photonics offers a promising solution for frequency converting microwave signals, however, demonstrations so far have either been bulky fibre implementations or lacked rejection of interfering image signals. Here, we demonstrate the first microwave photonic mixer with image rejection of broadband signals utilising chip-based stimulated Brillouin scattering and interferometry. We demonstrate frequency down-conversion of carrier frequencies ranging from 10 GHz-16 GHz, ultra-high image rejection for a single tone of up to 70 dB, and 100 MHz and 400 MHz wide analogue signals with 28.5 dB and 16 dB image rejection, respectively. Furthermore, we down-convert 200 Mb/s quadrature-phase-shift keying signals with an error vector magnitude as low as -9.6 dB when simultaneously present interfering image signals are suppressed by the mixer.
We demonstrate a tunable on-chip all-optical polarisation controller based on Polarisation Pulling via Stimulated Brillouin Scattering, achieving near-complete rotations between orthogonal linear polarisation states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.