Fresh allograft transplantation of osteochondral defects restores functional articular cartilage and subchondral bone; however, rapid loss of chondrocyte viability during storage and osteoclast-mediated bone resorption at the graft-host interface after transplantation negatively impact outcomes. The authors present a pilot study evaluating the in vitro and in vivo impact of augmenting storage media with bisphosphonates. Forty cylindrical osteochondral cores were harvested from femoral condyles of human cadaveric specimens and immersed in either standard storage media or storage media supplemented with nitrogenated or non-nitrogenated bisphosphonates. Maintenance of graft structure and chondrocyte viability were assessed at 3 time points. A miniature swine trochlear defect model was used to evaluate the influence of bisphosphonate-augmented storage media on in vivo incorporation of fresh osteochondral tissue, which was quantified via μCT and decalcified histology. In the in vitro study, Safranin-O/Fast Green staining showed that both low- and high-dose nitrogenated-treated grafts retained chondrocyte viability and cartilage matrix for up to 43 days of storage. Allografts stored in nitrogenated-augmented storage media showed both μCT and histologic evidence of enhanced in vivo bony and cartilaginous incorporation in the miniature swine trochlear defect model. Several preclinical studies have shown the potential for enhanced storage of fresh osteochondral allografts via additions of relatively common drugs and biomolecules. This study showed that supplementing standard storage media with nitrogenated bisphosphonates may improve maintenance of chondrocyte viability and graft structure during cold storage as well as enhance in vivo osseous and cartilaginous incorporation of the graft. [Orthopedics: 2018; 41(3):e376-e382.].
Angiosarcomas are rare, highly aggressive neoplasms originating from vascular or lymphatic endothelium [1]. Cutaneous angiosarcoma of the scalp has a predilection to involve pleural/subpleural surfaces [2,3]. Able to induce pneumothorax, hemothorax, and pleural effusion, few reports link angiosarcoma of the scalp to cystic lung disease [3]. Herein, we present a case of cutaneous angiosarcoma of the scalp associated with cystic lung disease and hydropneumothorax.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.