A mechanism for asymmetric transport based on the interplay between the fundamental symmetries of parity (P) and time (T ) with nonlinearity is presented. We experimentally demonstrate and theoretically analyze the phenomenon using a pair of coupled van der Pol oscillators, as a reference system, one with anharmonic gain and the other with complementary anharmonic loss; connected to two transmission lines. An increase of the gain/loss strength or the number of PT -symmetric nonlinear dimers in a chain, can increase both the asymmetry and transmittance intensities.PACS numbers: 42.25.Bs, 11.30.Er Directed transport is at the heart of many fundamental problems in physics. Furthermore it is of great relevance to engineering where the challenge is to design on-chip integrated devices that control energy and/or mass flows in different spatial directions. Along these lines, the creation of novel classes of integrated photonic, electronic, acoustic or thermal diodes is of great interest. Unidirectional elements constitute the basic building blocks for a variety of transport-based devices such as rectifiers, pumps, molecular switches and transistors.The idea was originally implemented in the electronics framework, with the construction of electrical diodes that were able to rectify the current flux. This significant revolution motivated researchers to investigate the possibility of implementing this idea of "diode action" to other areas. For example, a proposal for the creation of a thermal diode, capable of transmitting heat asymmetrically between two temperature sources, was suggested in Ref.[1]. Another domain of application was the propagation of acoustic pulses in granular systems [2].A related issue concerns the possibility of devising an optical diode which transmits light differently along opposite propagation directions. Currently, such unidirectional elements rely almost exclusively on the Faraday effect, where external magnetic fields are used to break space-time symmetry. Generally this requires materials with appreciable Verdet constants and/or large size non-reciprocal devices -typically not compatible with on-chip integration schemes or light-emitting wafers [3]. To address these problems, alternative proposals for the creation of optical diodes have been suggested recently. Examples include optical diodes based on second harmonic generation in asymmetric waveguides [4] and nonlinear photonic crystals [5], photonic quasi-crystals and molecules [6], or asymmetric nonlinear structures [7]. Most of these schemes, however, suffer from serious drawbacks making them unsuitable for commercial or smallscale applications. Relatively large physical sizes are often needed while absorption or direct reflection dramatically affects the functionality leading to an inadequate balance between figures of merit and optical intensities. In other cases, cumbersome structural designs are necessary to provide structural asymmetry, or the transmitted signal has different characteristics than the incident one.In this Letter ...
We show that Fano resonances created by two 𝒫 𝒯 -symmetric nonlinear micro-resonators coupled to a waveguide, have line-shape and resonance position that depends on the direction of the incident light. We utilize these features in order to induce asymmetric transport, up to 47 dBs, in the optical C-window. Our theoretical proposal requires low input power and does not compromise the power or frequency characteristics of the output signal.
We develop a general method for customizing the intensity statistics of speckle patterns on a target plane. By judiciously modulating the phase-front of a monochromatic laser beam, we experimentally generate speckle patterns with arbitrarily-tailored intensity probability-density functions. Relative to Rayleigh speckles, our customized speckles exhibit radically different topologies yet maintain the same spatial correlation length. The customized speckles are fully developed, ergodic, and stationary: with circular non-Gaussian statistics for the complex field. Propagating away from the target plane, the customized speckles revert back to Rayleigh speckles. This work provides a versatile framework for tailoring speckle patterns with varied applications in microscopy, imaging and optical manipulation.
We propose a family of local PT -symmetric photonic lattices with transverse index gradient ω, where the emergence of stable Bloch-Zener oscillations are controlled by the degree of non-Hermiticity γ of the lattice. In the exact PT -symmetric phase we identify a condition between ω and γ for which a wavepacket self -imaging together with a cascade of splittings and giant recombinations occurs at various propagation distances. The giant wavepacket recombination is further enhanced by introducing local impurities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.