Prions, proteins that can convert between structurally and functionally distinct states and serve as non-Mendelian mechanisms of inheritance, were initially discovered and only known in eukaryotes, and consequently considered to likely be a relatively late evolutionary acquisition. However, the recent discovery of prions in bacteria and viruses has intimated a potentially more ancient evolutionary origin. Here we provide evidence that prion-forming domains exist in the domain archaea, the last domain of life left unexplored with regard to prions. We searched for archaeal candidate prion-forming protein sequences computationally, described their taxonomic distribution and phylogeny, and analyzed their associated functional annotations. Using biophysical in vitro assays, cell-based and microscopic approaches, and dye-binding analyses, we tested select candidate prion-forming domains for prionogenic characteristics. Out of the 16 tested, 8 formed amyloids, and 6 acted as protein-based elements of information transfer driving non-Mendelian patterns of inheritance. We also identified short peptides from our archaeal prion candidates that can form amyloid fibrils independently. Lastly, candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, an observation that may help future archaeal prion predictions. Taken together, our discovery of functional prion-forming domains in archaea provides evidence that multiple archaeal proteins are capable of acting as prions—thus expanding our knowledge of this epigenetic phenomenon to the third and final domain of life and bolstering the possibility that they were present at the time of the last universal common ancestor (LUCA).
The Periodic Table of Life (PeTaL) is a system design tool and open source framework that uses artificial intelligence (AI) to aid in the systematic inquiry of nature for its application to human systems. This paper defines PeTaL’s architecture and workflow. Biomimicry, biophysics, biomimetics, bionics and numerous other terms refer to the use of biology and biological principles to inform practices in other disciplines. For the most part, the domain of inquiry in these fields has been confined to extant biological models with the proponents of biomimicry often citing the evolutionary success of extant organisms relative to extinct ones. An objective of this paper is to expand the domain of inquiry for human processes that seek to model those that are, were or could be found in nature with examples that relate to the field of aerospace and to spur development of tools that can work together to accelerate the use of artificial intelligence, topology optimization and conventional modeling in problem solving. Specifically, specialized fields such as paleomimesis, anthropomimesis and physioteleology are proposed in conjunction with artificial evolution. The overarching philosophy outlined here can be thought of as physiomimetics, a holistic and systematic way of learning from natural history. The backbone of PeTaL integrates an unstructured database with an ontological model consisting of function, morphology, environment, state of matter and ecosystem. Tools that support PeTaL include machine learning, natural language processing and computer vision. Applications of PeTaL include guiding human space exploration, understanding human and geological history, and discovering new or extinct life. Also discussed is the formation of V.I.N.E. (Virtual Interchange for Nature-inspired Exploration), a virtual collaborative aimed at generating data, research and applications centered on nature. Details of implementation will be presented in subsequent publications. Recommendations for future work are also presented.
Here we demonstrate a switchable DNA electron‐transfer catalyst, enabled by selective destabilization of secondary structure by the denaturant, perchlorate. The system is comprised of two strands, one of which can be selectively switched between a G‐quadruplex and duplex or single‐stranded conformations. In the G‐quadruplex state, it binds hemin, enabling peroxidase activity. This switching ability arises from our finding that perchlorate, a chaotropic Hofmeister ion, selectively destabilizes duplex over G‐quadruplex DNA. By varying perchlorate concentration, we show that the DNA structure can be switched between states that do and do not catalyze electron‐transfer catalysis. State switching can be achieved in three ways: thermally, by dilution, or by concentration.
† These authors contributed equally to this work. AbstractWe are nearing the end of a remarkable period that began in the 1960s in which semiconductor manufacturers succeeded in shrinking die and feature sizes logarithmically, thus growing transistor counts exponentially with time. As we reach the theoretical physical limits of classical MOSFET semiconductors, DNA is a highly attractive candidate for future miniaturization of microprocessors. Here we show a foundational electronic device -a transistor -can be constructed from DNA. The nanodevice is comprised of two strands, one of which can be selectively switched between a G-quadruplex and duplex or single-stranded conformations. This switching ability arises from our discovery that perchlorate, a chaotropic Hofmeister ion, selectively destabilizes duplex over G-quadruplex DNA. By varying perchlorate concentration, we show that the device can be operated as a switch or signal amplifier. State switching can be achieved in three ways: thermally, by dilution, or by concentration. In each case, when operated in the presence of the cofactor hemin, the device catalyzes electron transfer in only the Gquadruplex state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.