The development of snake antivenoms more than a century ago should have heralded effective treatment of the scourge of snakebite envenoming in impoverished, mostly rural populations around the world. That snakebite still exists today, as a widely untreated illness that maims, kills and terrifies men, women and children in vulnerable communities, is a cruel anachronism. Antivenom can be an effective, safe and affordable treatment for snakebites, but apathy, inaction and the politicisation of public health have marginalised both the problem (making snakebite arguably the most neglected of all neglected tropical diseases) and its solution. For lack of any coordinated approach, provision of antivenoms has been pushed off the public health agenda, leading to an incongruous decline in demand for these crucial antidotes, excused and fed by new priorities, an absence of epidemiological data, and a poor regulatory framework. These factors facilitated the infiltration of poor quality products that degrade user confidence and undermine legitimate producers. The result is that tens of thousands are denied an essential life-saving medicine, allowing a toll of human suffering that is a summation of many individual catastrophes. No strategy has been developed to address this problem and to overcome the intransigence and inaction responsible for the global tragedy of snakebite. Attempts to engage with the broader public health community through the World Health Organisation (WHO), GAVI, and other agencies have failed. Consequently, the toxinology community has taken on a leadership role in a new approach, the Global Snakebite Initiative, which seeks to mobilise the resources, skills and experience of scientists and clinicians for whom venoms, toxins, antivenoms, snakes and snakebites are already fields of interest. Proteomics is one such discipline, which has embraced the potential of using venoms in bio-discovery and systems biology. The fields of venomics and antivenomics have recently evolved from this discipline, offering fresh hope for the victims of snakebites by providing an exciting insight into the complexities, nature, fundamental properties and significance of venom constituents. Such a rational approach brings with it the potential to design new immunising mixtures from which to raise potent antivenoms with wider therapeutic ranges. This addresses a major practical limitation in antivenom use recognised since the beginning of the 20th century: the restriction of therapeutic effectiveness to the specific venom immunogen used in production. Antivenomic techniques enable the interactions between venoms and antivenoms to be examined in detail, and if combined with functional assays of specific activity and followed up by clinical trials of effectiveness and safety, can be powerful tools with which to evaluate the suitability of current and new antivenoms for meeting urgent regional needs. We propose two mechanisms through which the Global Snakebite Initiative might seek to end the antivenom drought in Africa and Asia: fi...
BackgroundThe worldwide neglect of immunotherapeutic products for the treatment of snakebite has resulted in a critical paucity of effective, safe and affordable therapy in many Third World countries, particularly in Africa. Snakebite ranks high among the most neglected global health problems, with thousands of untreated victims dying or becoming permanently maimed in developing countries each year because of a lack of antivenom—a treatment that is widely available in most developed countries. This paper analyses the current status of antivenom production for sub-Saharan African countries and provides a snapshot of the global situation.MethodsA global survey of snake antivenom products was undertaken in 2007, involving 46 current and former antivenom manufacturers. Companies producing antivenom for use in sub-Saharan Africa were re-surveyed in 2010 and 2011.ResultsThe amount of antivenom manufactured for sub-Saharan Africa increased between 2007 and 2010/11, however output and procurement remained far below that required to treat the estimated 300,000–500,000 snakebite victims each year. Variable potency and inappropriate marketing of some antivenoms mean that the number of effective treatments available may be as low as 2.5% of projected needs. Five companies currently market antivenom for sale in Africa; three others have products in the final stages of development; and since 2007 one has ceased production indefinitely. Most current antivenom producers possess a willingness and capacity to raise output. However inconsistent market demand, unpredictable financial investment and inadequate quality control discourage further production and threaten the viability of the antivenom industry.ConclusionFinancial stimulus is urgently needed to identify and develop dependable sources of high-grade antivenoms, support current and emerging manufacturers, and capitalise on existing unutilised production capacity. Investing to ensure a consistent and sustainable marketplace for efficacious antivenom products will drive improvements in quality, output and availability, and save thousands of lives each year.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.