ObjectiveThe prevalence of mitochondrial disease has proven difficult to establish, predominantly as a result of clinical and genetic heterogeneity. The phenotypic spectrum of mitochondrial disease has expanded significantly since the original reports that associated classic clinical syndromes with mitochondrial DNA (mtDNA) rearrangements and point mutations. The revolution in genetic technologies has allowed interrogation of the nuclear genome in a manner that has dramatically improved the diagnosis of mitochondrial disorders. We comprehensively assessed the prevalence of all forms of adult mitochondrial disease to include pathogenic mutations in both nuclear and mtDNA.MethodsAdults with suspected mitochondrial disease in the North East of England were referred to a single neurology center from 1990 to 2014. For the midyear period of 2011, we evaluated the minimum prevalence of symptomatic nuclear DNA mutations and symptomatic and asymptomatic mtDNA mutations causing mitochondrial diseases.ResultsThe minimum prevalence rate for mtDNA mutations was 1 in 5,000 (20 per 100,000), comparable with our previously published prevalence rates. In this population, nuclear mutations were responsible for clinically overt adult mitochondrial disease in 2.9 per 100,000 adults.InterpretationCombined, our data confirm that the total prevalence of adult mitochondrial disease, including pathogenic mutations of both the mitochondrial and nuclear genomes (≈1 in 4,300), is among the commonest adult forms of inherited neurological disorders. These figures hold important implications for the evaluation of interventions, provision of evidence‐based health policies, and planning of future services. Ann Neurol 2015 Ann Neurol 2015;77:753–759
Summary The body’s first line of defense against environmental assaults, the skin barrier is maintained by epithelial stem cells (EpSCs). Despite EpSCs’ vulnerability to inflammatory pressures, neither the primary response nor its enduring consequences are understood. Here, we unearth a prolonged memory to acute inflammation that enables EpSCs to hasten barrier restoration following subsequent tissue damage. This functional adaptation does not require skin resident macrophages or T cells. Rather, EpSCs maintain chromosomal accessibility at key stress response genes that are activated by the primary stimulus. Upon a secondary challenge, genes governed by these domains are transcribed rapidly. Fueling this memory is Aim2, encoding an activator of the inflammasome. Absence of AIM2 or its downstream effectors, Caspase-1 and Interleukin-1β, erases EpSCs’ ability to recollect inflammation. While EpSCs benefit from inflammatory tuning by heightening their responsiveness to subsequent stressors, this enhanced sensitivity likely increases their susceptibility to autoimmune and hyperproliferative disorders, including cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.