A high incidence of decreased bone mineral density (BMD) has increasingly been associated with HIV infection. In this study mesenchymal stem cell (MSC) and human osteoblast (hOB) cell lines were treated with HIV tat, HIV rev, HIV p55-gag, HIV gp120 and HTLV env (100 ng/ml, 24 h). Cells were then analyzed for calcium deposition, alkaline phosphatase (ALP) activity, and lipid levels using established methods. Real-time PCR with gene-specific primers was used to quantify the mRNA levels of the transcription factors RUNX-2 and PPARgamma, transcription factors known to be pro-osteogenic and pro-adipogenic, respectively. The levels of secreted bone markers and transcription factor activity were determined using commercial assays. In OBs, HIV p55-gag and gp120 were seen to reduce calcium deposition, ALP activity, levels of secreted BMP-2, -7, and RANK-L, and the expression and activity of RUNX-2. The levels of osteocalcin were also significantly reduced by p55-gag treatment, while gp120 also increased PPARgamma activity. Lipid levels were also increased by gp120 treatment. The ability of MSCs to develop into functioning OBs was also affected by the presence of HIV proteins, with p55-gag inducing a decrease in osteogenesis, while rev induced an increase. HIV proteins can potentially modulate OB development and function in vitro via modulation of bone maker secretion and RUNX-2 and PPARgamma transcription factor activity.
An increased incidence of bone and lipid toxicities is associated with HIV-1 infection and its treatment. Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into both osteoblasts (OB) and adipocytes (AC). We hypothesize that the interaction of MSC and HIV-1 underlie these toxicities. Serum was collected from uninfected control and HIV-infected, antiviral-naive patients. Sera were divided into three groups: HIV-negative sera (n = 5), HIV-positive low viral load (LVL) (VL range 120; 4000, n = 5) or high viral load (HVL) (VL range 100,000; 500,000, n = 5). MSCs were exposed to these sera (5%) in an adipogenic/osteogenic condition and in nondifferentiating conditions in acute and chronic exposure models. Markers of adipogenesis/osteogenesis were examined in both MSCs induced to differentiated and nondifferentiating cells. Sera from HVL HIV-1-infected individuals induced a clear proadipogenic phenotype, as evidenced by an increase in adipocyte formation and the induction of increased expression of adipogenic markers including LPL and PPARγ. Both CD4 receptor blockade and treatment with the antiretroviral AZT attenuated these proadipogenic effects, suggesting that an infection event may underlie the observed phenomena. Finally, inhibition of COUP TF-1 by HIV-1 TAT was identified as a potential molecular mechanism for these effects. These results suggest that HIV-1 directly interacts with and may infect MSCs resulting in alterations of their differentiation potential, findings that significantly enhance our understanding of HIV-1-associated bone and fat toxicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.