A novel series of potent and selective sulfonamide derived β(2)-adrenoreceptor agonists are described that exhibit potential as inhaled ultra-long-acting bronchodilators for the treatment of asthma and chronic obstructive pulmonary disease. Analogues from this series mediate very long-lasting smooth muscle relaxation in guinea pig tracheal strips. The sulfonamide agonist headgroup confers high levels of intrinsic crystallinity that could relate to the acidic sulfonamide motif supporting a zwitterionic form in the solid state. Optimization of pharmacokinetic properties was achieved through targeted introduction of a phenolic moiety to support rapid phase II clearance, thereby minimizing systemic exposure following inhalation and reducing systemically mediated adverse events. Compound 38 (PF-610355) is identified as a clinical candidate from this series, with in vivo duration of action studies confirming its potential for once-daily use in humans. Compound 38 is currently in advanced phase II clinical studies.
A novel tertiary amine series of potent muscarinic M(3) receptor antagonists are described that exhibit potential as inhaled long-acting bronchodilators for the treatment of chronic obstructive pulmonary disease. Geminal dimethyl functionality present in this series of compounds confers very long dissociative half-life (slow off-rate) from the M(3) receptor that mediates very long-lasting smooth muscle relaxation in guinea pig tracheal strips. Optimization of pharmacokinetic properties was achieved by combining rapid oxidative clearance with targeted introduction of a phenolic moiety to secure rapid glucuronidation. Together, these attributes minimize systemic exposure following inhalation, mitigate potential drug-drug interactions, and reduce systemically mediated adverse events. Compound 47 (PF-3635659) is identified as a Phase II clinical candidate from this series with in vivo duration of action studies confirming its potential for once-daily use in humans.
Asthma is a chronic inflammatory lung disease with considerable unmet medical needs for new and effective therapies. Cytosolic phospholipase A 2 ␣ (cPLA 2 ␣) is the rate-limiting enzyme that is ultimately responsible for the production of eicosanoids implicated in the pathogenesis of asthma. We investigated a novel cPLA 2
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.