The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
Coastal dunes arise from feedbacks between vegetation and sediment supply. Species-specific differences in plant functional morphology affect sand capture and dune shape. In this study, we build on research showing a relationship between dune grass species and dune geomorphology on the US central Atlantic Coast. This study seeks to determine the ways in which four co-occurring dune grass species (Ammophila breviligulata, Panicum amarum, Spartina patens, Uniola paniculata) differ in their functional morphology and sand accretion. We surveyed the biogeography, functional morphology, and associated change in sand elevation of the four dune grass species along a 320-kilometer distance across the Outer Banks. We found that A. breviligulata had dense and clumped shoots, which correlated with the greatest sand accretion. Coupled with fast lateral spread, it tends to build tall and wide foredunes. Uniola paniculata had fewer but taller shoots and was associated with ~42% lower sand accretion. Coupled with slow lateral spread, it tends to build steeper and narrower dunes. Panicum amarum had similar shoot densities and associated sand accretion to U. paniculata despite its shorter shoots, suggesting that shoot density is more important than morphology. Finally, we hypothesize, given the distributions of the grass species, that foredunes may be taller and wider and have better coastal protection properties in the north where A. breviligulata is dominant. If under a warming climate A. breviligulata experiences a range shift to the north, as appears to be occurring with U. paniculata, changes in grass dominance and foredune morphology could make for more vulnerable coastlines.
Coastal foredune growth is typically associated with aeolian sediment transport processes, while foredune erosion is associated with destructive marine processes. New data sets collected at a high energy, dissipative beach suggest that total water levels in the collision regime can cause dunes to accrete—requiring a paradigm shift away from considering collisional wave impacts as unconditionally erosional. From morphologic change data sets, it is estimated that marine processes explain between 9% and 38% of annual dune growth with aeolian processes accounting for the remaining 62% to 91%. The largest wind‐driven dune growth occurs during the winter, in response to high wind velocities, but out of phase with summertime beach growth via intertidal sandbar welding. The lack of synchronization between maximum beach sediment supply and wind‐driven dune growth indicates that aeolian transport at this site is primarily transport, rather than supply, limited, likely due to a lack of fetch limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.