Actin cytoskeleton plays a critical role in regulating T cell motility and activation. However, the lack of a real-time quantitative method to analyze actin assembly has limited the progress toward understanding actin regulation. Here, we describe a novel approach to probe actin dynamics on living T cells using FRET combined with flow cytometry. We have first generated a Jurkat T cell line stably coexpressing EGFP and mOrange FPs fused to actin. The real-time variation of actin monomer assembly or disassembly into filaments was quantified using a ratiometric flow cytometry method measuring changes in the mOrange/EGFP emission ratio. The method was validated on resting T cells by using chemical compounds with known effects on actin filaments and comparison with conventional microscopy imaging. Our method also detected the rapid and transient actin assembly in T cells stimulated by anti-CD3/CD28-coated beads, demonstrating its robustness and high sensitivity. Finally, we provide evidence that lentiviral-mediated transduction of shRNAs in engineered Jurkat cells could be used as a strategy to identify regulators of actin remodeling. In conclusion, the flow cytometric FRET analysis of actin polymerization represents a new technical advance to study the dynamics of actin regulation in intact cells.
Actin networks are dynamically regulated through constant depolymerization and polymerization cycles. Although the fundamental mechanisms that govern these processes have been identified, the nature and role of post-translational modifications (PTMs) of actin and actin regulatory proteins are not completely understood. Here, we employed Actin CytoFRET, a method that we developed for real time detection of fluorescence resonance energy transfer (FRET) signals generated by actin dynamics, to screen a small library of PTM-interfering compounds on a biosensor leukemic T cell line. This strategy led to the identification of small molecule inhibitors of deubiquitinating enzymes (DUBs) as potent inducers of actin polymerization and blockers of chemotactic cell migration. The examination of the underlying mechanism further revealed that the actin depolymerizing protein cofilin represents a major effector of DUB inhibitor (DUBi)-induced actin reorganization. We found that DUB blockade results in the accumulation of polyubiquitinated proteins and ROS production, associated with cofilin oxidation and dephosphorylation on serine 3, which provokes uncontrolled actin polymerization impairing cell migration. Together, our study highlights DUBs as novel regulators of actin dynamics through ROS-dependent cofilin modulation, and shows that DUBi represent attractive novel tools to impede leukemic cell migration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.