In Saccharomyces cerevisiae, more than 80% of the approximately 6200 predicted genes are nonessential, implying that the genome is buffered from the phenotypic consequences of genetic perturbation. To evaluate function, we developed a method for systematic construction of double mutants, termed synthetic genetic array (SGA) analysis, in which a query mutation is crossed to an array of approximately 4700 deletion mutants. Inviable double-mutant meiotic progeny identify functional relationships between genes. SGA analysis of genes with roles in cytoskeletal organization (BNI1, ARP2, ARC40, BIM1), DNA synthesis and repair (SGS1, RAD27), or uncharacterized functions (BBC1, NBP2) generated a network of 291 interactions among 204 genes. Systematic application of this approach should produce a global map of gene function.
Neurodevelopment requires precise regulation of gene expression, including posttranscriptional regulatory events such as alternative splicing and mRNA translation. However, translational regulation of specific isoforms during neurodevelopment and the mechanisms behind it remain unknown. Using RNA-seq analysis of mouse neocortical polysomes, here we report translationally repressed and derepressed mRNA isoforms during neocortical neurogenesis whose orthologs include risk genes for neurodevelopmental disorders. We demonstrate that the translation of distinct mRNA isoforms of the RNA binding protein (RBP), Elavl4, in radial glia progenitors and early neurons depends on its alternative 5′ UTRs. Furthermore, 5′ UTR-driven Elavl4 isoform-specific translation depends on upstream control by another RBP, Celf1. Celf1 regulation of Elavl4 translation dictates development of glutamatergic neurons. Our findings reveal a dynamic interplay between distinct RBPs and alternative 5′ UTRs in neuronal development and underscore the risk of post-transcriptional dysregulation in co-occurring neurodevelopmental disorders.
Alterations in retrotransposition, synaptic connectivity, and myelination implicated by transcriptomic changes following maternal immune activation in non-human primates
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.