Sex-determining systems may evolve rapidly and contribute to lineage diversification. In fact, recent work has suggested an integral role of sex chromosome evolution in models of speciation. We use quantitative trait loci analysis of restriction site-associated DNA -tag single nucleotide polymorphisms to identify multiple loci responsible for sex determination and reproductively adaptive color phenotypes in Lake Malawi cichlids. We detect a complex epistatic sex system consisting of a major female heterogametic ZW locus on chromosome 5, two separate male heterogametic XY loci on chromosome 7, and two additional interacting loci on chromosomes 3 and 20. Our data support the known chromosomal linkage between orange blotch color and ZW, as well as novel genetic associations between male blue nuptial color and two sex determining regions (an XY and ZW locus). These results provide further empirical evidence for a complex antagonistic sex-color system in this species flock and suggest a possible role for, and effect of, polygenic sex-determining systems in rapid evolutionary diversification.
The lower jaw (LJ) provides an ideal trophic phenotype to compare rates and patterns of macroevolution among cichlid radiations. Using a novel phylogeny of four genes (ND2, dlx2, mitfb, and s7), we examined the evolutionary relationships among two of the most phylogenetically disparate cichlid radiations: (i) the Central America Heroines; and (ii) the East African Lake Malawi flock. To quantify jaw morphology, we measured two LJ lever systems in approximately 40 species from each lineage. Using geologic calibrations, we generated a chronogram for both groups and examined the rates of jaw evolution in the two radiations. The most rapidly evolving components of the LJ differed between the two radiations. However, the Lake Malawi flock exhibited a much faster rate of evolution in several components of the LJ. This rapid rate of divergence is consistent with natural selection, promoting unparalleled trophic diversification in Lake Malawi cichlids.
BackgroundEvolutionary biologists want to explain the origin of novel features and functions. Two recent but separate lines of research address this question. The first describes one possible outcome of hybridization, called transgressive segregation, where hybrid offspring exhibit trait distributions outside of the parental range. The second considers the explicit mapping of form to function and illustrates manifold paths to similar function (called many to one mapping, MTOM) when the relationship between the two is complex. Under this scenario, functional novelty may be a product of the number of ways to elicit a functional outcome (i.e., the degree of MTOM). We fuse these research themes by considering the influence of MTOM on the production of transgressive jaw biomechanics in simulated hybrids between Lake Malawi cichlid species.ResultsWe characterized the component links and functional output (kinematic transmission, KT) of the 4-bar mechanism in the oral jaws of Lake Malawi cichlids. We demonstrated that the input and output links, the length of the lower jaw and the length of the maxilla respectively, have consistent but opposing relationships with KT. Based on these data, we predicted scenarios in which species with different morphologies but similar KT (MTOM species) would produce transgressive function in hybrids. We used a simple but realistic genetic model to show that transgressive function is a likely outcome of hybridization among Malawi species exhibiting MTOM. Notably, F2 hybrids are transgressive for function (KT), but not the component links that contribute to function. In our model, transgression is a consequence of recombination and assortment among alleles specifying the lengths of the lower jaw and maxilla.ConclusionWe have described a general and likely pervasive mechanism that generates functional novelty. Simulations of hybrid offspring among Lake Malawi cichlids exhibiting MTOM produce transgressive function in the majority of cases, and at appreciable frequency. Functional transgression (i) is a product of recombination and assortment between alleles controlling the lengths of the lower jaw and the maxilla, (ii) occurs in the absence of transgressive morphology, and (iii) can be predicted from the morphology of parents. Our genetic model can be tested by breeding Malawi cichlid hybrids in the laboratory and examining the resulting range of forms and functions.
The relationship between form and function can have profound effects on evolutionary dynamics and such effects may differ for simple versus complex systems. In particular, functions produced by multiple structural configurations (many-to-one mapping, MTOM) may dampen constituent trade-offs and promote diversification. Unfortunately, we lack information about the genetic architecture of MTOM functional systems. The skulls of teleost fishes contain both simple (lower jaw levers) as well as more complex (jaws modeled as 4-bar linkages) functional systems within the same craniofacial unit. We examined the mapping of form to function and the genetic basis of these systems by identifying quantitative trait loci in hybrids of two Lake Malawi cichlid species. Hybrid individuals exhibited novelty (transgressive segregation) in morphological components and function of the simple and complex jaw systems. Functional novelty was proportional to the prevalence of extreme morphologies in the simple levers; by contrast, recombination of parental morphologies produced transgression in the MTOM 4-bar linkage. We found multiple loci of moderate effect and epistasis controlling jaw phenotypes in both the simple and complex systems, with less phenotypic variance explained by QTL for the 4-bar. Genetic linkage between components of the simple and complex systems partly explains phenotypic correlations and may constrain functional evolution.
Teeth and taste buds are iteratively patterned structures that line the oro-pharynx of vertebrates. Biologists do not fully understand how teeth and taste buds develop from undifferentiated epithelium or how variation in organ density is regulated. These organs are typically studied independently because of their separate anatomical location in mammals: teeth on the jaw margin and taste buds on the tongue. However, in many aquatic animals like bony fishes, teeth and taste buds are colocalized one next to the other. Using genetic mapping in cichlid fishes, we identified shared loci controlling a positive correlation between tooth and taste bud densities. Genome intervals contained candidate genes expressed in tooth and taste bud fields. sfrp5 and bmper, notable for roles in Wingless (Wnt) and bone morphogenetic protein (BMP) signaling, were differentially expressed across cichlid species with divergent tooth and taste bud density, and were expressed in the development of both organs in mice. Synexpression analysis and chemical manipulation of Wnt, BMP, and Hedgehog (Hh) pathways suggest that a common cichlid oral lamina is competent to form teeth or taste buds. Wnt signaling couples tooth and taste bud density and BMP and Hh mediate distinct organ identity. Synthesizing data from fish and mouse, we suggest that the Wnt-BMP-Hh regulatory hierarchy that configures teeth and taste buds on mammalian jaws and tongues may be an evolutionary remnant inherited from ancestors wherein these organs were copatterned from common epithelium.quantitative trait loci | tooth/taste bud development | placode patterning | bipotency | plasticity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.