Crystal structure prediction methods are prone to overestimate the number of potential polymorphs of organic molecules. In this work, we aim to reduce the overprediction by systematically applying molecular dynamics simulations and biased sampling methods to cluster subsets of structures that can easily interconvert at finite temperature and pressure. Following this approach, we rationally reduce the number of predicted putative polymorphs in CSP-generated crystal energy landscapes. This uses an unsupervised clustering approach to analyze independent finite-temperature molecular dynamics trajectories and hence identify a representative structure of each cluster of distinct lattice energy minima that are effectively equivalent at finite temperature and pressure. Biased simulations are used to reduce the impact of limited sampling time and to estimate the work associated with polymorphic transformations. We demonstrate the proposed systematic approach by studying the polymorphs of urea and succinic acid, reducing an initial set of over 100 energetically plausible CSP structures to 12 and 27 respectively, including the experimentally known polymorphs. The simulations also indicate the types of disorder and stacking errors that may occur in real structures. File list (2) download file view on ChemRxiv manuscript_Francia_revised.pdf (16.99 MiB) download file view on ChemRxiv Supplementary_Information_Francia.pdf (7.35 MiB)
The control of the crystal form is a central issue in the pharmaceutical industry. The identification of putative polymorphs through Crystal Structure Prediction (CSP) methods is based on lattice energy...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.