Here, we demonstrate an integrated microfluidic capillary electrophoresis-electrospray ionization (CE-ESI) device for the separation of intact monoclonal antibody charge variants with online mass spectrometric (MS) identification. The need for dynamic coating and zwitterionic background electrolyte (BGE) additives has been eliminated by utilizing surface chemistry within the device channels to control analyte adsorption and electroosmotic flow (EOF) while maintaining separation efficiency. The effectiveness of this strategy was illustrated with the separation of charge variants of Infliximab. Three major species corresponding to C-terminal lysine variants were separated with an average resolution of 0.80 and identified by mass difference. In addition to the lysine variants, masses were determined for minor acidic and basic species. The separation of these variants prior to MS analysis facilitated the identification of glycosylation patterns for each of the variants. The general applicability of this method was demonstrated by analyzing two additional monoclonal antibody species: an IgG2 antibody and an IgG1 antibody conjugate. The IgG2 proved to have similar modifications to Infliximab with lower relative abundances of the lysine variants. Analysis of the IgG1 drug conjugate further exemplified the advantages of MS detection; differences in the extent of antibody conjugation were detectable despite limited CE resolution. The CE-ESI-MS methodology described here is a rapid and generic strategy for the separation of intact mAb charge variants and facilitates the identification of variants through MS detection.
We describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices. Devices coated with (3-aminopropyl)di-isopropylethoxysilane (APDIPES) yielded near diffusion-limited separations and exhibited little change in electroosmotic mobility between pH 2.8 and pH 7.5. We further evaluated the temporal stability of both APDIPES and (3-aminopropyl)triethoxysilane (APTES) coatings when stored for a total of 1 week under vacuum at 4 °C or filled with pH 2.8 background electrolyte at room temperature. Measurements of electroosmotic flow (EOF) and separation efficiency during this time confirmed that both coatings were stable under both conditions. Microfluidic devices with a 23 cm long, serpentine electrophoretic separation channel and integrated nanoelectrospray ionization emitter were CVD coated with APDIPES and used for capillary electrophoresis (CE)-electrospray ionization (ESI)-mass spectrometry (MS) of peptides and proteins. Peptide separations were fast and highly efficient, yielding theoretical plate counts over 600,000 and a peak capacity of 64 in less than 90 s. Intact protein separations using these devices yielded Gaussian peak profiles with separation efficiencies between 100,000 and 400,000 theoretical plates.
This paper describes the fabrication and characterization of thin-layer mercury/gold amalgam microelectrodes and their integration with microchip-based flow injection analysis. This microchip platform allows on-chip injection and lysis of erythrocytes followed by selective detection of intracellular glutathione (GSH) at low potentials. The thin-layer gold microelectrodes were amalgamated by electrodeposition of mercury. The electrodes produced a linear response for both GSH and cysteine in flow injection analysis studies utilizing both off-chip and on-chip injection. Comparative experiments using diamide and on-chip injection were performed to demonstrate the ability of the microchip device to detect changes in GSH concentration. Finally, rabbit erythrocyte samples (2% hematocrit) were injected and lysed on-chip and the amount of GSH detected corresponded to 312 amol/cell, which is in agreement with previously reported values. The selectivity, short time between injection and detection (∼5 s), and the continuous introduction of sample to the on-chip injector should enable the study of dynamically changing systems such as the glutathione redox system found in erythrocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.