Public health concerns such as multi- and extensive drug-resistant tuberculosis, bioterrorism, pandemic influenza, and severe acute respiratory syndrome have intensified efforts to prevent transmission of infections that are completely or partially airborne using environmental controls. One such control, ultraviolet germicidal irradiation (UVGI), has received renewed interest after decades of underutilization and neglect. With renewed interest, however, come renewed questions, especially regarding efficacy and safety. There is a long history of investigations concluding that, if used properly, UVGI can be safe and highly effective in disinfecting the air, thereby preventing transmission of a variety of airborne infections. Despite this long history, many infection control professionals are not familiar with the history of UVGI and how it has, and has not, been used safely and effectively. This article reviews that history of UVGI for air disinfection, starting with its biological basis, moving to its application in the real world, and ending with its current status.
Public health concerns such as multidrug-resistant tuberculosis, bioterrorism, pandemic influenza, and sick building syndrome have brought about increased interest in the use of ultraviolet germicidal irradiation (UVGI) to prevent the spread of airborne infection. UVGI lamps require that radiometric measurements be performed to ensure their safe and effective use. This study evaluates 10 detectors that measure the ultraviolet radiation hazard of low-pressure mercury UVGI lamps, including a polychromator spectroradiometer, narrowband detectors designed to measure the ultraviolet radiation in a short range of wavelengths, and broadband detectors with a varying spectral response designed to follow the UV hazard action spectrum. The angular responses, spectral responses, and linearity of the detectors were measured and compared. The agreement between the measured angular responses and the ideal cosine responses varied widely among the detectors, and in general, the detectors with diffusing optics agreed significantly better with the ideal cosine response. The spectral responses at 254 nm also varied widely among the detectors, and, in general, the narrowband detectors agreed more closely with the 254 nm irradiances measured under the same conditions by a double monochromator spectroradiometer. All detectors displayed good linearity. The angular and spectral response data were then used to develop correction factors for the effective irradiance measurements of two UVGI sources, each measured at 10, 20, and 30 cm. The measured effective irradiances were compared with those measured by a double monochromator spectroradiometer with an integrating sphere input optic. Prior to correction, the effective irradiances measured by the detectors varied widely, ranging from 0.29 to 2.7 times those measured by the spectroradiometer. The application of cosine and spectral response correction factors significantly improved the agreement for the effective irradiances measured by all of the detectors, typically to within 10-20%. Awareness of these detector characteristics can play a key role in ensuring the accuracy of health hazard measurements of UVGI lamps.
Ultraviolet germicidal irradiation can be used to prevent airborne transmission of infectious diseases. A common application is to irradiate upper-room areas, by passing air from the lower room into the irradiated zone. Well-designed systems do not expose people directly; however, some UV radiation may be reflected off ceiling tiles and wall paints into the lower room. Lower room exposure should be limited to the American Conference of Governmental Industrial Hygienists threshold limit value of 6 mJ·cm(-2) of 254 nm radiation per day. To limit the lower room exposure, the reflectance of upper-room surfaces must not be high. The reflective properties of wall paints have been studied, but less is known about the UV reflectance of ceiling tiles. Using a double monochromator spectroradiometer and an integrating sphere reflectance attachment, the UV spectral reflectance of 37 ceiling tiles was measured from 200 to 400 nm. The reflectances varied from 0.020 to 0.822 in this range, and from 0.035 to 0.459 at 254 nm, the main wavelength emitted by upper room low-pressure mercury germicidal lamps. These data were then used to estimate an 8 h exposure based on several simplified workplace scenarios. The implications for workplace safety are then discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.