The efficient delivery of nanomaterials to specific targets for in vivo biomedical imaging is hindered by rapid sequestration by the reticuloendothelial system (RES) and consequent short circulation times. To overcome these two problems, we have prepared a new stealth PEG polymer conjugate containing a terminal 1,1-bisphosphonate (BP) group for strong and stable binding to the surface of ultrasmall-superparamagnetic oxide nanomaterials (USPIOs). This polymer, PEG(5)-BP, can be used to exchange the hydrophobic surfactants commonly used in the synthesis of USPIOs very efficiently and at room temperature using a simple method in 1 h. The resulting nanoparticles, PEG(5)-BP-USPIOs are stable in water or saline for at least 7 months and display a near-zero ζ-potential at neutral pH. The longitudinal (r1) and transverse (r2) relaxivities were measured at a clinically relevant magnetic field (3 T), revealing a high r1 of 9.5 mM–1 s–1 and low r2/r1 ratio of 2.97, making these USPIOs attractive as T1-weighted MRI contrast agents at high magnetic fields. The strong T1-effect was demonstrated in vivo, revealing that PEG(5)-BP-USPIOs remain in the bloodstream and enhance its signal 6-fold, allowing the visualization of blood vessels and vascular organs with high spatial definition. Furthermore, the optimal relaxivity properties allow us to inject a dose 4 times lower than with other USPIOs. PEG(5)-BP-USPIOs can also be labeled using a radiolabeled-BP for visualization with single photon emission computed tomography (SPECT), and thus affording dual-modality contrast. The SPECT studies confirmed low RES uptake and long blood circulation times (t1/2 = 2.97 h). These results demonstrate the potential of PEG(5)-BP-USPIOs for the development of targeted multimodal imaging agents for molecular imaging.
For the clinical delivery of immunotherapies it is anticipated that cells will be cryopreserved and shipped to the patient where they will be thawed and administered. An established view in cellular cryopreservation is that following freezing, cells must be warmed rapidly (≤5 minutes) in order to maintain high viability. In this study we examine the interaction between the rate of cooling and rate of warming on the viability, and function of T cells formulated in a conventional DMSO based cryoprotectant and processed in conventional cryovials. The data obtained show that provided the cooling rate is −1 °C min −1 or slower, there is effectively no impact of warming rate on viable cell number within the range of warming rates examined (1.6 °C min −1 to 113 °C min −1 ). It is only following a rapid rate of cooling (−10 °C min −1 ) that a reduction in viable cell number is observed following slow rates of warming (1.6 °C min −1 and 6.2 °C min −1 ), but not rapid rates of warming (113 °C min −1 and 45 °C min −1 ). Cryomicroscopy studies revealed that this loss of viability is correlated with changes in the ice crystal structure during warming. At high cooling rates (−10 °C min −1 ) the ice structure appeared highly amorphous, and when subsequently thawed at slow rates (6.2 °C min −1 and below) ice recrystallization was observed during thaw suggesting mechanical disruption of the frozen cells. This data provides a fascinating insight into the crystal structure dependent behaviour during phase change of frozen cell therapies and its effect on live cell suspensions. Furthermore, it provides an operating envelope for the cryopreservation of T cells as an emerging industry defines formulation volumes and cryocontainers for immunotherapy products.
Non-invasive assessment of arterial stiffness through pulse wave velocity (PWV) analysis is becoming common clinical practice. However, the effects of measurement noise, temporal resolution and similarity of the two waveforms used for PWV calculation upon accuracy and variability are unknown. We studied these effects upon PWV estimates given by foot-to-foot, least squared difference, and cross-correlation algorithms. We assessed accuracy using numerically generated blood pressure and flow waveforms for which the theoretical PWV was known to compare with the algorithm estimates. We assessed variability using clinical measurements in 28 human subjects. Wave shape similarity was quantified using a cross correlation-coefficient (CCCoefficient), which decreases with increasing distance between waveform measurements sites. Based on our results, we propose the following criteria to identify the most accurate and least variable algorithm given the noise, resolution and CCCoefficient of the measured waveforms. (1) Use foot-to-foot when the noise-to-signal ratio ≤10%, and/or temporal resolution ≥100 Hz. Otherwise (2) use a least squares differencing method applied to the systolic upstroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.