Interferon (IFN)-γ, a cytokine critical for resistance to infection and tumors, is produced by CD4+ helper T lymphocytes after stimulation by cultured dendritic cells (DCs) that secrete a cofactor, interleukin (IL)-12. We have identified a major IL-12–independent pathway whereby DCs induce IFN-γ–secreting T helper (Th)1 CD4+ T cells in vivo. This pathway requires the membrane-associated tumor necrosis family member CD70 and was identified by targeting the LACK antigen from Leishmania major within an antibody to CD205 (DEC-205), an uptake receptor on a subset of DCs. Another major DC subset, targeted with 33D1 anti-DCIR2 antibody, also induced IFN-γ in vivo but required IL-12, not CD70. Isolated CD205+ DCs expressed cell surface CD70 when presenting antigen to T cell receptor transgenic T cells, and this distinction was independent of maturation stimuli. CD70 was also essential for CD205+ DC function in vivo. Detection of the IL-12–independent IFN-γ pathway was obscured with nontargeted LACK, which was presented by both DC subsets. This in situ analysis points to CD70 as a decision maker for Th1 differentiation by CD205+ DCs, even in Th2-prone BALB/c animals and potentially in vaccine design. The results indicate that two DC subsets have innate propensities to differentially affect the Th1/Th2 balance in vivo and by distinct mechanisms.
Parasite-specific CD4+ T cells have been shown to transfer protection against Leishmania major in susceptible BALB/c mice. An epitope-tagged expression library was used to identify the antigen recognized by a protective CD4+ T cell clone. The expression library allowed recombinant proteins made in bacteria to be captured by macrophages for presentation to T cells restricted to major histocompatibility complex class II. A conserved 36-kilodalton member of the tryptophan-aspartic acid repeat family of proteins was identified that was expressed in both stages of the parasite life cycle. A 24-kilodalton portion of this antigen protected susceptible mice when administered as a vaccine with interleukin-12 before infection.
Background: MHC class I-peptide tetramers are currently utilised to characterize CD8 + T cell responses at single cell level. The generation and use of MHC class II tetramers to study antigenspecific CD4 + T cells appears less straightforward. Most MHC class II tetramers are produced with a homogeneously built-in peptide, reducing greatly their flexibility of use. We attempted the generation of "empty" functional HLA-DR*1101 tetramers, receptive for loading with synthetic peptides by incubation. No such reagent is in fact available for this HLA-DR allele, one of the most frequent in the Caucasian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.