Parameterization of interatomic forcefields is a necessary first step in performing molecular dynamics simulations. This is a non-trivial global optimization problem involving quantification of multiple empirical variables against one or more properties. We present EZFF, a lightweight Python library for parameterization of several types of interatomic forcefields implemented in several molecular dynamics engines against multiple objectives using geneticalgorithm-based global optimization methods. The EZFF scheme provides unique functionality such as the parameterization of hybrid forcefields composed of multiple forcefield interactions as well as built-in quantification of uncertainty in forcefield parameters and can be easily extended to other forcefield functional forms as well as MD engines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.