The Richtmyer-Meshkov instability is experimentally investigated in a vertical shock tube using a new type of broadband initial condition imposed on an interface between a helium-acetone mixture and argon (A = 0.7). The initial condition is created by first setting up a gravitationally stable stagnation plane between the gases and then injecting the same two gases horizontally at the interface to create a shear layer. The perturbations along the shear layer create a statistically repeatable broadband initial condition. The interface is accelerated by a M = 1.6 planar shock wave, and the development of the ensuing turbulent mixing layer is investigated using planar laser induced fluorescence. By the latest experimental time, 2.1 ms after shock acceleration, the layer is shown to be fully turbulent, surpassing both turbulent transition criteria based on the Reynolds number and shear layer scale. Mixing structures are nearly isotropic by the latest time, as seen by the probability density function of gradient angles within the mixing layer. The scalar variance energy spectrum suggests a k−5/3 inertial range by the latest time and an exponential region at higher wavenumbers.
The Richtmyer–Meshkov instability (RMI) is experimentally investigated in a vertical shock tube using a broadband initial condition imposed on an interface between a helium–acetone mixture and argon ($A\approx 0.7$). The interface is created without the use of a membrane by first setting up a flat, gravitationally stable stagnation plane, where the gases are injected from the ends of the shock tube and exit through horizontal slots at the interface location. Following this, the interface is perturbed by injecting gas within the plane of the interface. Perturbations form in the lower portion of this layer due to the shear between this injected stream and the surrounding gas. This shear layer serves as a statistically repeatable broadband initial condition to the RMI. The interface is accelerated by either a $M= 1.6 $ or $M= 2.2 $ planar shock wave, and the development of the ensuing mixing layer is investigated using planar laser-induced fluorescence (PLIF). The PLIF images are processed to reveal the light-gas mole fraction by accounting for laser absorption and laser-steering effects. The images suggest a transition to turbulent mixing occurring during the experiment. An analysis of the mole-fraction distribution confirms this transition, showing the gases begin to homogenize at later times. The scalar variance energy spectra exhibits a near $k^{-5/3}$ inertial range, providing further evidence for turbulent mixing. Measurements of the Batchelor and Taylor microscales are made from the mole-fraction images, giving ${\sim }150\ \mu \mathrm{m}$ and 4 mm, respectively, by the latest times. The ratio of these scales implies an outer-scale Reynolds number of $6\text {--}7\times 10^4$.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.