The control of slide blocks on slope depositional systems is investigated in a high‐quality 3D seismic volume from the Espírito Santo Basin, SE Brazil. Seismic interpretation and statistical methods were used to understand the effect of differential compaction on strata proximal to the headwall of a blocky mass‐transport deposit (MTD), where blocks are large and undisturbed (remnant), and in the distal part of this same deposit. The distal part contains smaller rafted blocks that moved and deformed with the MTD. Upon their emplacement, the positive topographic relief of blocks created a rugged seafloor, confining sediment pathways and creating accommodation space for slope sediment. In parallel, competent blocks resisted compaction more than the surrounding debrite matrix during early burial. This resulted in differential compaction between competent blocks and soft flanking strata, in a process that was able to maintain a rugged seafloor for >5 Ma after burial. Around the largest blocks, a cluster of striations associated with a submarine channel bypassed these obstructions on the slope and, as a result, reflects important deflection by blocks and compaction‐related folds that were obstructing turbidite flows. Log‐log graphs were made to compare the width and height of different stratigraphic elements; blocks, depocentres and channels. There is a strong correlation between the sizes of each element, but with each subsequent stage (block–depocentre–channel) displaying marked reductions in height. Blocky MTDs found on passive margins across the globe are likely to experience similar effects during early burial to those documented in this work.
a b s t r a c tHigh-quality 3D seismic and borehole data in the Broad Fourteens Basin, Southern North Sea, is used to investigate newly recognised concentric faults formed in salt-withdrawal basins flanking reactivated salt structures. Throwdepth and throw-distance plots were used to understand the growth histories of individual faults. As a result, three families of concentric faults are identified: a) intra-seal faults within a salt-withdrawal basin, b) faults connecting the seal and the reservoir on the crest of an inverted anticline, c) raft-bounding faults propagating into reservoir units. They have moved obliquely and show normal throws, even though they formed during a period of regional compression. Faults in the salt-withdrawal basin and on the inverted anticline are highly segmented, increasing the chances of compartmentalisation or localised fluid flow through fault linkages. Slip tendency analysis was carried out on the distinct fault families to compare the likelihood of slip along a fault at different pore fluid pressures and within different lithologies. Our results show that sections of the faults are optimally oriented with regards to maximum horizontal stresses (σ Hmax ), increasing the slip tendency. The identified faults cut through a variety of lithologies, allowing different values of pore fluid pressures to build up before faults reactivate. Within the Vlieland Sandstones, pore fluid pressures of 30 MPa are not sufficient to reactivate pre-existing faults, whereas in the deeper Posidonia Shales faults might reactivate at pore fluid pressures of 25 MPa. Fluid flow features preferentially occur near fault segments close to failure. Heterogeneity in slip tendency along concentric faults, and high degrees of fault segmentation, present serious hazards when injecting CO 2 into the subsurface. This study stresses the importance of high-quality 3D seismic data and the need to evaluate individual fault systems when investigating potential reservoirs for carbon capture and storage and enhanced oil recovery.
We used high-quality three-dimensional (3-D) seismic data to quantify the timing and magnitude of differential compaction over a Late Miocene submarine channel complex in SE Brazil (Espírito Santo Basin). A thicknessrelief method was applied to quantify the thickness variations in strata deposited over the channel complex. We found that differential compaction started after the channel complex was buried by ~200 m of strata, as revealed by thinning horizons observed over a compaction-related anticline. The size of the anticline is greatest in the south of the study area, reaching heights of 41 ms (~50 m). Fluid expelled through faults on the margins of the channel complex formed large depressions. These depressions increased in size after deep-water currents removed the fluid-rich sediment filling them. Differential compaction also occurred over deposits downslope of knickpoints, reaching maximum heights of 29 ms (~35 m). Seismic reflections onlap the knickpoint face and are believed to comprise slumped strata and debrites. Two-way traveltime isochron and amplitude maps indicate that there are limited connectivity and lateral continuity of the coarse-grained units. Differential compaction over these deposits created anticlines with four-way dip closure. As a consequence, isolated reservoirs were closed vertically by the compaction anticlines and laterally by strata onlapping the knickpoint face. These unique reservoirs could have been charged by migration of hydrocarbons along sands at the base of the channel complex. A fill-to-spill model is hypothesized using the above mechanism: Once an isolated anticlinal trap reached spill point, hydrocarbons migrated upslope into the next trap. Traps like these could form above submarine channels in similar basins around the world (e.g., Gulf of Mexico, west coast of Africa) after early burial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.