This paper describes the use of a Lagrangian discrete droplet model to evaluate the liquid fuel impingement characteristics on the internal surfaces of an early injection gasoline direct injection (GDI) engine. The study focuses on fuel impingement on the intake valve and cylinder liner between start of injection (SOI) and 20° after SOI using both a single-and multi-component fuel. The single-component fuel used was isooctane and the multi-component fuel contained fractions of iso-pentane, iso-octane and n-decane to represent the light, medium and heavy fuel fractions of gasoline, respectively. A detailed description of the impingement and liquid film modelling approach is also provided. 2Fuel properties, wall surface temperature and droplet Weber number and Laplace number were used to quantify the impingement regime for different fuel fractions and correlated well with the predicted onset of liquid film formation. Evidence of film stripping was seen from the liquid film formed on the side of the intake valve head with subsequent ejected droplets being a likely source of unburned hydrocarbons and particulate matter emissions. Differences in impingement location and subsequent location of liquid film formation were also observed between single-and multicomponent fuels. A qualitative comparison with experimental cylinder liner impingement data showed the model to well predict the timing and positioning of the liner fuel impingement.
This paper presents the findings from a numerical study of a gasoline direct injection engine flow using the Large Eddy Simulation (LES) modelling technique. The study is carried out over 30 successive engine cycles.The study illustrates how the more simple but robust Smagorinsky LES sub-grid scale turbulence model can be applied to a complex engine geometry with realistic engineering mesh size and computational expense whilst still meeting the filter width requirements to resolve the majority of large scale turbulent structures.Detailed description is provided here for the computational setup, including the initialisation strategy. The mesh is evaluated using a turbulence resolution parameter and shows the solution to generally resolve upwards of 80% of the turbulence kinetic energy. The calculated mean and fluctuating velocity components have been validated across multiple cutting planes at key crank angles within the intake stroke with good agreement obtained against experimental data and compared with RANS model predictions.A Proper Orthogonal Decomposition (POD) technique is then used to evaluate the in-cylinder flow field with the results focusing around the eigenvalue/energy content and time coefficients associated with each mode. The findings have shown how this technique can be used to assess the amount of small scale turbulence generated at the point of spark timing, the level of flow field cyclic variability and the degree of statistical convergence to be expected from an ensemble average result based on the number of cycles and the level of cyclic variability present in the flow field.
This paper presents findings from a numerical study of intake valve jet flapping within a gasoline direct injection (GDI) engine, using a large eddy simulation (LES) turbulence modelling approach. The experimental test case and computational setup, including choice of sub-grid scale (SGS) turbulence model, are presented and discussed. An example cycle where intake valve jet flapping is seen to be prominent is discussed in detail. Intake valve jet flapping was found to be initiated as a consequence of turbulent fluctuations in the intake valve curtains. Cycle-by-cycle variations in valve curtain mass flux and the subsequent jet flapping events are investigated and significant cyclic variability is found. It was observed that when an ensemble-averaging procedure, typically used in LES simulations and experimental PIV data post-processing, is applied, due to the cyclic variability of the variations in valve curtain mass flux, most of the information related to this flow phenomenon is lost.
The noise levels generated by an unmuffled engine exhaust system can be identified as the loudest vehicle noise source. The muffler or silencer is an essential component of the internal combustion engine exhaust system. Its main function is to reduce the exhaust-generated noise to an acceptably low level. Its design development is a complex process affecting the engine efficiency and thus fuel consumption, emissions and overall noise generation. This paper focuses on the design development of a muffler for a single-cylinder engine application. A 1D GT-Power model of a single valve engine was developed. Additionally, an analytical muffler preliminary design methodology was introduced. The methodology provides guidelines for muffler grade selection, sizing of different components, calculation of backpressure as a function of the exhaust gas flow rate. Two custom mufflers design concepts were developed for the single-cylinder engine based on the introduced analytical methodology. Two commercial single-cylinder engine muffler designs available from Yanmar and Loncin were considered for the engine performance evaluation simulation. The presented combination of analytical and numerical modelling procedures can reduce the overall length of the muffler development stage by eliminating faulty design concepts and refining the muffler's performance parameters.
The noise levels generated by an unmuffled engine exhaust system can be identified as the loudest vehicle noise source. The muffler or silencer is an essential component of the internal combustion engine exhaust system. Its main function is to reduce the exhaust-generated noise to an acceptably low level. Its design development is a complex process affecting the engine efficiency and thus fuel consumption, emissions and overall noise generation. This paper focuses on the design development of a muffler for a single-cylinder engine application. A 1D GT-Power model of a single valve engine was developed. Additionally, an analytical muffler preliminary design methodology was introduced. The methodology provides guidelines for muffler grade selection, sizing of different components, calculation of backpressure as a function of the exhaust gas flow rate. Two custom mufflers design concepts were developed for the single-cylinder engine based on the introduced analytical methodology. Two commercial single-cylinder engine muffler designs available from Yanmar and Loncin were considered for the engine performance evaluation simulation. The presented combination of analytical and numerical modelling procedures can reduce the overall length of the muffler development stage by eliminating faulty design concepts and refining the muffler's performance parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.