Biogeographic patterns of parasite diversity are useful for determining how host-parasite interactions can influence speciation. However, variation in methodologies and sampling effort can skew diversity estimates. Avian haemosporidians are vector-transmitted blood parasites represented by over 1300 unique genetic lineages spread across over 40 countries. We used a global database of lineage distributions for two avian haemosporidian genera, Plasmodium and Haemoproteus, to test for congruence of diversity among haemosporidians and their avian hosts across 13 geographic regions. We demonstrated that avian haemosporidians exhibit similar diversity patterns to their avian hosts; however, specific patterns differ between genera. Haemoproteus spp. diversity estimates were significantly higher than those of Plasmodium spp. in all areas where the genera co-occurred, apart from the Plasmodium spp.-rich region of South America. The geographic distributions of parasite genera also differed, with Haemoproteus spp. absent from the majority of oceanic regions while Plasmodium spp. were cosmopolitan. These findings suggest fundamental differences in the way avian haemosporidians diverge and colonise new communities. Nevertheless, a review of the literature suggests that accurate estimates of avian haemosporidian diversity patterns are limited by (i) a concentration of sampling towards passerines from Europe and North America, (ii) a frequent failure to include microscopic techniques together with molecular screening and (iii) a paucity of studies investigating distributions across vector hosts.
Aim: Identifying barriers that govern parasite community assembly and parasite invasion risk is critical to understand how shifting host ranges impact disease emergence.We studied regional variation in the phylogenetic compositions of bird species and their blood parasites (Plasmodium and Haemoproteus spp.) to identify barriers that shape parasite community assembly.Location: Australasia and Oceania. Methods:We used a data set of parasite infections from >10,000 host individuals sampled across 29 bioregions. Hierarchical models and matrix regressions were used to assess the relative influences of interspecies (host community connectivity and local phylogenetic distinctiveness), climate and geographic barriers on parasite local distinctiveness and composition.Results: Parasites were more locally distinct (co-occurred with distantly related parasites) when infecting locally distinct hosts, but less distinct (co-occurred with closely related parasites) in areas with increased host diversity and community connectivity (a proxy for parasite dispersal potential). Turnover and the phylogenetic symmetry of parasite communities were jointly driven by host turnover, climate similarity and geographic distance. Main conclusions:Interspecies barriers linked to host phylogeny and dispersal shape parasite assembly, perhaps by limiting parasite establishment or local diversification.Infecting hosts that co-occur with few related species decreases a parasite's likelihood of encountering related competitors, perhaps increasing invasion potential but decreasing diversification opportunity. While climate partially constrains parasite distributions, future host range expansions that spread distinct parasites and diminish barriers to host shifting will likely be key drivers of parasite invasions. K E Y W O R D Scommunity assembly, host shifting, host specificity, interspecies barriers, parasite invasion, Plasmodium
Inferring interactions between co-occurring species is key to identify processes governing community assembly. Incorporating interspecific interactions in predictive models is common in ecology, yet most methods do not adequately account for indirect interactions (where an interaction between two species is masked by their shared interactions with a third) and assume interactions do not vary along environmental gradients. Markov random fields (MRF) overcome these limitations by estimating interspecific interactions, while controlling for indirect interactions, from multispecies occurrence data. We illustrate the utility of MRFs for ecologists interested in interspecific interactions, and demonstrate how covariates can be included (a set of models known as Conditional Random Fields, CRF) to infer how interactions vary along environmental gradients. We apply CRFs to two data sets of presence-absence data. The first illustrates how blood parasite (Haemoproteus, Plasmodium, and nematode microfilaria spp.) co-infection probabilities covary with relative abundance of their avian hosts. The second shows that co-occurrences between mosquito larvae and predatory insects vary along water temperature gradients. Other applications are discussed, including the potential to identify replacement or shifting impacts of highly connected species along climate or land-use gradients. We provide tools for building CRFs and plotting/interpreting results as an R package.
Parasites with low host specificity (e.g. infecting a large diversity of host species) are of special interest in disease ecology, as they are likely more capable of circumventing ecological or evolutionary barriers to infect new hosts than are specialist parasites. Yet for many parasites, host specificity is not fixed and can vary in response to environmental conditions. Using data on host associations for avian malaria parasites (Apicomplexa: Haemosporida), we develop a hierarchical model that quantifies this environmental dependency by partitioning host specificity variation into region‐ and parasite‐level effects. Parasites were generally phylogenetic host specialists, infecting phylogenetically clustered subsets of available avian hosts. However, the magnitude of this specialisation varied biogeographically, with parasites exhibiting higher host specificity in regions with more pronounced rainfall seasonality and wetter dry seasons. Recognising the environmental dependency of parasite specialisation can provide useful leverage for improving predictions of infection risk in response to global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.