Summary LepR3, found in the Brassica napus cv ‘Surpass 400’, provides race‐specific resistance to the fungal pathogen Leptosphaeria maculans, which was overcome after great devastation in Australia in 2004. We investigated the LepR3 locus to identify the genetic basis of this resistance interaction. We employed a map‐based cloning strategy, exploiting collinearity with the Arabidopsis thaliana and Brassica rapa genomes to enrich the map and locate a candidate gene. We also investigated the interaction of LepR3 with the L. maculans avirulence gene AvrLm1 using transgenics. LepR3 was found to encode a receptor‐like protein (RLP). We also demonstrated that avirulence towards LepR3 is conferred by AvrLm1, which is responsible for both the Rlm1 and LepR3‐dependent resistance responses in B. napus. LepR3 is the first functional B. napus disease resistance gene to be cloned. AvrLm1's interaction with two independent resistance loci, Rlm1 and LepR3, highlights the need to consider redundant phenotypes in ‘gene‐for‐gene’ interactions and offers an explanation as to why LepR3 was overcome so rapidly in parts of Australia.
Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.
Summary Leucine‐rich repeat receptor‐like proteins (LRR‐RLPs) are highly adaptable parts of the signalling apparatus for extracellular detection of plant pathogens. Resistance to blackleg disease of Brassica spp. caused by Leptosphaeria maculans is largely governed by host race‐specific R‐genes, including the LRR‐RLP gene LepR3. The blackleg resistance gene Rlm2 was previously mapped to the same genetic interval as LepR3. In this study, the LepR3 locus of the Rlm2 Brassica napus line ‘Glacier DH24287’ was cloned, and B. napus transformants were analysed for recovery of the Rlm2 phenotype. Multiple B. napus, B. rapa and B. juncea lines were assessed for sequence variation at the locus. Rlm2 was found to be an allelic variant of the LepR3 LRR‐RLP locus, conveying race‐specific resistance to L. maculans isolates harbouring AvrLm2. Several defence‐related LRR‐RLPs have previously been shown to associate with the RLK SOBIR1 to facilitate defence signalling. Bimolecular fluorescence complementation (BiFC) and co‐immunoprecipitation of RLM2‐SOBIR1 studies revealed that RLM2 interacts with SOBIR1 of Arabidopsis thaliana when co‐expressed in Nicotiana benthamiana. The interaction of RLM2 with AtSOBIR1 is suggestive of a conserved defence signalling pathway between B. napus and its close relative A. thaliana.
Blackleg disease of Brassica napus caused by Leptosphaeria maculans (Lm) is largely controlled by the deployment of race-specific resistance (R) genes. However, selection pressure exerted by R genes causes Lm to adapt and give rise to new virulent strains through mutation and deletion of effector genes. Therefore, a knowledge of effector gene function is necessary for the effective management of the disease. Here, we report the cloning of Lm effector AvrLm9 which is recognized by the resistance gene Rlm9 in B. napus cultivar Goéland. AvrLm9 was mapped to scaffold 7 of the Lm genome, co-segregating with the previously reported AvrLm5 (previously known as AvrLmJ1). Comparison of AvrLm5 alleles amongst the 37 re-sequenced Lm isolates and transgenic complementation identified a single point mutation correlating with the AvrLm9 phenotype. Therefore, we renamed this gene as AvrLm5-9 to reflect the dual specificity of this locus. Avrlm5-9 transgenic isolates were avirulent when inoculated on the B. napus cultivar Goéland. The expression of AvrLm5-9 during infection was monitored by RNA sequencing. The recognition of AvrLm5-9 by Rlm9 is masked in the presence of AvrLm4-7, another Lm effector. AvrLm5-9 and AvrLm4-7 do not interact, and AvrLm5-9 is expressed in the presence of AvrLm4-7. AvrLm5-9 is the second Lm effector for which host recognition is masked by AvrLm4-7. An understanding of this complex interaction will provide new opportunities for the engineering of broad-spectrum recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.