Recent findings suggest that rare variants play an important role in both monogenic and common diseases. Due to their rarity, however, it remains unclear how to appropriately analyze the association between such variants and disease. A common approach entails combining rare variants together based on a priori information and analyzing them as a single group. Here one must make some assumptions about what to aggregate. Instead, we propose two approaches to empirically determine the most efficient grouping of rare variants. The first considers multiple possible groupings using existing information. The second is an agnostic “step-up” approach that determines an optimal grouping of rare variants analytically and does not rely on prior information. To evaluate these approaches, we undertook a simulation study using sequence data from genes in the one-carbon folate metabolic pathway. Our results show that using prior information to group rare variants is advantageous only when information is quite accurate, but the step-up approach works well across a broad range of plausible scenarios. This agnostic approach allows one to efficiently analyze the association between rare variants and disease while avoiding assumptions required by other approaches for grouping such variants.
Studies of rare, inborn metabolic diseases establish that the phenotypes of some mutations in vitamin-dependent enzymes can be suppressed by supplementation of the cognate vitamin, which restores function of the defective enzyme. To determine whether polymorphisms exist that more subtly affect enzymes yet are augmentable in the same way, we sequenced the coding region of a prototypical vitamin-dependent enzyme, methylenetetrahydrofolate reductase (MTHFR), from 564 individuals of diverse ethnicities. All nonsynonymous changes were evaluated in functional in vivo assays in Saccharomyces cerevisiae to identify enzymatic defects and folate remediability of impaired alleles. We identified 14 nonsynonymous changes: 11 alleles with minor allele frequencies <1% and 3 common alleles (A222V, E429A, and R594Q). Four of 11 low-frequency alleles affected enzyme function, as did A222V. Of the five impaired alleles, four could be restored to normal functionality by elevating intracellular folate levels. All five impaired alleles mapped to the N-terminal catalytic domain of the enzyme, whereas changes in the C-terminal regulatory domain had little effect on activity. Impaired activity correlated with the phosphorylation state of MTHFR, with more severe mutations resulting in lower abundance of the phosphorylated protein. Significantly, diploid yeast heterozygous for mutant alleles were impaired for growth, particularly with lower folate supplementation. These results suggested that multiple less-frequent alleles, in aggregate, might significantly contribute to metabolic dysfunction. Furthermore, vitamin remediation of mutant enzymes may be a common phenomenon in certain domains of proteins.nutrigenetics ͉ polymorphism ͉ vitamin
We have identified a Schizosaccharomyces pombe gene, mkh1, that encodes a MEK kinase (MEKK) homolog. The coding region of mkh1 is contained within a single exon encoding a 1,116-amino-acid protein. The putative catalytic domain of Mkh1 is 54% identical to the catalytic domain of S. cerevisiae Bck1, the most closely related protein. Deletion of mkh1 did not significantly affect cell growth or division under standard conditions. However, mkh1⌬ cell growth was inhibited by high KCl or NaCl concentrations. mkh1⌬ cells required a longer time to reenter the cell cycle after prolonged stationary-phase arrest. Also, mkh1⌬ cells exhibited a round cell shape, while overexpression of Mkh1 resulted in an elongated cell shape. mkh1⌬ cells exhibited a more dramatic phenotype when grown in nutrient-limiting conditions at high temperature or in hyperosmotic medium. In such conditions, completion of cytokinesis was inhibited, resulting in the growth of pseudohyphal filaments with multiple septa and nuclei. Also, mkh1⌬ cells were hypersensitive to -glucanase treatment. Together these results suggest that Mkh1 regulates cell morphology, cell wall integrity, salt resistance, cell cycle reentry from stationary-phase arrest, and filamentous growth in response to stress. These phenotypes are essentially identical to those exhibited by cells lacking Pmk1/Spm1, a recently identified mitogen-activated protein kinase. Our evidence suggests that Pmk1/Spm1 acts downstream from Mkh1 in a common pathway. Our results also suggest that Mkh1 and Pck2 act independently to maintain cell wall integrity, cell morphology, and salt resistance but act in opposition to regulate filamentous growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.