Respiratory infection with highly pathogenic influenza A viruses is characterized by the exuberant production of cytokines and chemokines and the enhanced recruitment of innate inflammatory cells. Here, we show that challenging mice with virulent influenza A viruses, including currently circulating H5N1 strains, causes the increased selective accumulation of a particular dendritic cell subset, the tipDCs, in the pneumonic airways. These tipDCs are required for the further proliferation of influenza-specific CD8 ؉ T cells in the infected lung, because blocking their recruitment in CCR2 ؊/؊ mice decreases the numbers of CD8 ؉ effectors and ultimately compromises virus clearance. However, diminution rather than total elimination of tipDC trafficking by treatment with the peroxisome proliferator-activated receptor-␥ agonist pioglitazone moderates the potentially lethal consequences of excessive tipDC recruitment without abrogating CD8 ؉ T cell expansion or compromising virus control. Targeting the tipDCs in this way thus offers possibilities for therapeutic intervention in the face of a catastrophic pandemic.H5N1 ͉ inflammation ͉ pathogenesis
Wild ducks are the main reservoir of influenza A viruses that can be transmitted to domestic poultry and mammals, including humans. Of the 16 hemagglutinin (HA) subtypes of influenza A viruses, only the H5 and H7 subtypes cause highly pathogenic (HP) influenza in the natural hosts. Several duck species are naturally resistant to HP Asian H5N1 influenza viruses. These duck species can shed and spread virus from both the respiratory and intestinal tracts while showing few or no disease signs. While the HP Asian H5N1 viruses are 100% lethal for chickens and other gallinaceous poultry, the absence of disease signs in some duck species has led to the concept that ducks are the “Trojan horses” of H5N1 in their surreptitious spread of virus. An important unresolved issue is whether the HP H5N1 viruses are maintained in the wild duck population of the world. Here, we review the ecology and pathobiology of ducks infected with influenza A viruses and ducks’ role in the maintenance and spread of HP H5N1 viruses. We also identify the key questions about the role of ducks that must be resolved in order to understand the emergence and control of pandemic influenza. It is generally accepted that wild duck species can spread HP H5N1 viruses, but there is insufficient evidence to show that ducks maintain these viruses and transfer them from one generation to the next.
Since 1985, avian influenza virus surveillance has been conducted annually from mid-May to early June in charadriiform species from the families Scolopacidae and Laridae (shorebirds and gulls) at Delaware Bay in the northeast United States. The mass migrations of shorebirds, gulls and horseshoe crabs (Limulus polyphemus) coincide at that time, and large numbers of migrating birds pause at Delaware Bay to feed on horseshoe crab eggs deposited at the high-tide line. Influenza viruses are consistently isolated from charadriiform birds at Delaware Bay, at an overall rate approximately 17 times the combined rate of isolation at all other surveillance sites worldwide (490 isolates/9474 samples, 5.2% versus 49 isolates per 15 848 samples, 0.3%, respectively; Proportion test, p , 0.0001). The likelihood of isolating influenza viruses at Delaware Bay is dependent on the presence of ruddy turnstone (Arenaria interpres) at the sampling site (G-test of independence, p , 0.001). The convergence of host factors and environmental factors results in a unique ecological 'hot spot' for influenza viruses in Charadriiformes.
Avian influenza surveillance in Bangladesh has been passive, relying on poultry farmers to report suspected outbreaks of highly pathogenic H5N1 influenza. Here, the results of an active surveillance effort focusing on the live-bird markets are presented. Prevalence of influenza infection in the birds of the live bird markets is 23.0%, which is similar to that in poultry markets in other countries. Nearly all of the isolates (94%) were of the non-pathogenic H9N2 subtype, but viruses of the H1N2, H1N3, H3N6, H4N2, H5N1, and H10N7 subtypes were also observed. The highly pathogenic H5N1-subtype virus was observed at extremely low prevalence in the surveillance samples (0.08%), and we suggest that the current risk of infection for humans in the retail poultry markets in Bangladesh is negligible. However, the high prevalence of the H9 subtype and its potential for interaction with the highly pathogenic H5N1-subtype, i.e., reassortment and attenuation of host morbidity, highlight the importance of active surveillance of the poultry markets.
In Egypt, efforts to control highly pathogenic H5N1 avian influenza virus in poultry and in humans have failed despite increased biosecurity, quarantine, and vaccination at poultry farms. The ongoing circulation of HP H5N1 avian influenza in Egypt has caused >100 human infections and remains an unresolved threat to veterinary and public health. Here, we describe that the failure of commercially available H5 poultry vaccines in Egypt may be caused in part by the passive transfer of maternal H5N1 antibodies to chicks, inhibiting their immune response to vaccination. We propose that the induction of a protective immune response to H5N1 is suppressed for an extended period in young chickens. This issue, among others, must be resolved and additional steps must be taken before the outbreaks in Egypt can be controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.