Wood carbon (C) concentration is a key wood trait that varies widely among tree species, but our understanding of the factors governing this trait is limited, despite reason to hypothesize that wood C varies systematically across environmental gradients. We compiled a novel database of 1145 geo‐referenced wood C observations from 415 species, to elucidate climate correlates of wood C concentrations, and test if these relationships differ across tissue types and major taxonomic divisions (i.e. angiosperms vs gymnosperms). Climate variables, including mean annual temperature (MAT) and precipitation and temperature seasonality, are significantly correlated with wood C concentrations. Relationships between wood C and these variables differ across tissue types and taxonomic divisions, yet there is a negative relationship between wood C and MAT that exists across all tissues and species groups. Wood C concentrations in trees are influenced by climate, with experimental evidence (albeit scant) indicating that climate‐driven changes in lignin concentrations likely govern these relationships. Our study presents among the first lines of evidence indicating that wood C concentrations are correlated with environmental conditions, thereby enhancing our understanding of the potential adaptive significance of wood C variation in trees.
Woody tissue carbon (C) concentration is a key wood trait necessary for accurately estimating forest C stocks and fluxes, which also varies widely across species and biomes. However, coarse approximations of woody tissue C (e.g., 50%) remain commonplace in forest C estimation and reporting protocols, despite leading to substantial errors in forest C estimates. Here, we describe the Global Woody Tissue Carbon Concentration Database (GLOWCAD): a database containing 3,676 individual records of woody tissue C concentrations from 864 tree species. Woody tissue C concentration data—i.e., the mass of C per unit dry mass—were obtained from live and dead woody tissues from 130 peer-reviewed sources published between 1980–2020. Auxiliary data for each observation include tissue type, as well as decay class and size characteristics for dead wood. In GLOWCAD, 1,242 data points are associated with geographic coordinates, and are therefore presented alongside 46 standardized bioclimatic variables extracted from climate databases. GLOWCAD represents the largest available woody tissue C concentration database, and informs studies on forest C estimation, as well as analyses evaluating the extent, causes, and consequences of inter- and intraspecific variation in wood chemical traits.
Intraspecific trait variation is a critical determinant of ecosystem processes, especially in agroecosystems where single species or genotypes exist in very high abundance. Yet to date, only a small number of studies have evaluated if, how, or why traits forming the Leaf Economics Spectrum (LES) vary within crops, despite such studies informing our understanding of: (1) the environmental factors that drive crop LES trait variation and (2) how domestication has altered LES traits in crops vs. wild plants. We assess intragenotype variation in LES traits in ‘Chardonnay’ (Vitis vinifera)—one of the world’s most commercially important crops—across a soil compaction gradient: one of the most prominent characteristics of agricultural soils that may drive crop trait variation. Our early evidence indicates that ‘Chardonnay’ traits covary along an intragenotype LES in patterns that are qualitatively similar to those observed among wild plants: resource-acquiring vines expressed a combination of high mass-based photosynthesis (Amass), mass-based dark respiration (Rmass), and leaf nitrogen concentrations (N), coupled with low leaf mass per area (LMA); the opposite set of trait values defined the resource-conserving end of the ‘Chardonnay’ LES. Traits reflecting resource acquisition strategies (Amass, Rmass, and leaf N) declined with greater bulk density, while traits related to investment in leaf construction costs (LMA) increased with greater bulk density. Our findings contribute to an understanding of the domestication syndrome in grapevines and also provide information relevant for quantifying trait-based crop responses to environmental change and gradients.
Purpose Intraspecific trait variation is a critical determinant of ecosystem processes, especially in agroecosystems where single species or genotypes exist in very high abundances. Yet to date only a small number of studies have evaluated if, how, or why traits forming the Leaf Economics Spectrum (LES) vary within crops, despite such studies informing our understanding of: 1) the environmental factors that drive crop LES trait variation; and 2) how domestication has altered LES traits in crops vs. wild plants.Methods We assess intragenotype variation in LES traits in ‘Chardonnay’ (Vitis vinifera)—among the world’s most commercially important crops, across a soil compaction gradient: one of the most prominent characteristics of agricultural soils that may drive crop trait variation.Results ‘Chardonnay’ traits covary along an intragenotype LES in patterns that were qualitatively similar to those observed among wild plants: resource acquiring vines expressed a combination of high mass-based photosynthesis (Amass), mass-based dark respiration (Rmass), leaf nitrogen concentrations (N), coupled with low leaf mass per area (LMA); the opposite set of trait values defined the resource conserving end of the ‘Chardonnay’ LES. Traits related to resource acquisition (Amass, Rmass, and leaf N) declined with greater bulk density, while traits related to investment in leaf construction costs (LMA) increased with greater bulk density.Conclusion Our findings uncover a deeper understanding of both the domestication syndromes in grapevines, and expand our understanding of trait-based crop responses to environmental change and gradients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.