To gain insight into the regulation of pancreatic beta-cell mitochondrial metabolism, the direct effects on respiration of different mitochondrial substrates, variations in the ATP/ADP ratio and free Ca2+ were examined using isolated mitochondria and permeabilized clonal pancreatic beta-cells (HIT). Respiration from pyruvate was high and not influenced by Ca2+ in State 3 or under various redox states and fixed values of the ATP/ADP ratio; nevertheless, high Ca2+ elevated pyridine nucleotide fluorescence, indicating activation of pyruvate dehydrogenase by Ca2+. Furthermore, in the presence of pyruvate, elevated Ca2+ stimulated CO2 production from pyruvate, increased citrate production and efflux from the mitochondria and inhibited CO2 production from palmitate. The latter observation suggests that beta-cell fatty acid oxidation is not regulated exclusively by malonyl-CoA but also by the mitochondrial redox state. alpha-Glycerophosphate (alpha-GP) oxidation was Ca(2+)-dependent with a half-maximal rate observed at around 300 nM Ca2+. We have recently demonstrated that increases in respiration precede increases in Ca2+ in glucose-stimulated clonal pancreatic beta-cells (HIT), indicating that Ca2+ is not responsible for the initial stimulation of respiration [Civelek, Deeney, Kubik, Schultz, Tornheim and Corkey (1996) Biochem. J. 315, 1015-1019]. It is suggested that respiration is stimulated by increased substrate (alpha-GP and pyruvate) supply together with oscillatory increases in ADP [Nilsson, Schultz, Berggren, Corkey and Tornheim (1996) Biochem. J. 314, 91-94]. The rise in Ca2+, which in itself may not significantly increase net respiration, could have the important functions of (1) activating the alpha-GP shuttle, to maintain an oxidized cytosol and high glycolytic flux; (2) activating pyruvate dehydrogenase, and indirectly pyruvate carboxylase, to sustain production of citrate and hence the putative signal coupling factors, malonyl-CoA and acyl-CoA; and (3) increasing mitochondrial redox state to implement the switch from fatty acid to pyruvate oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.