Impressive capacity improvements can be obtained by wrapping insulating crystallites of Li3V2(PO4)3 within a conductive carbon web. The single crystal analysis (see Figure) and electrochemical characteristics of Li3V2(PO4)3 are reported. X‐ray diffraction analysis of the single phases formed on Li extraction shows that the framework is maintained with a little loss of crystallinity; on re‐insertion of Li, the Li3.0V2(PO4)3 framework is fully recrystallized.
Molecules labeled with fluorine-18 are used as radiotracers for positron emission tomography. An important challenge is the labeling of arenes not amenable to aromatic nucleophilic substitution (SNAr) with [(18)F]F(-). In the ideal case, the (18)F fluorination of these substrates would be performed through reaction of [(18)F]KF with shelf-stable readily available precursors using a broadly applicable method suitable for automation. Herein, we describe the realization of these requirements with the production of (18)F arenes from pinacol-derived aryl boronic esters (arylBPin) upon treatment with [(18)F]KF/K222 and [Cu(OTf)2(py)4] (OTf = trifluoromethanesulfonate, py = pyridine). This method tolerates electron-poor and electron-rich arenes and various functional groups, and allows access to 6-[(18)F]fluoro-L-DOPA, 6-[(18)F]fluoro-m-tyrosine, and the translocator protein (TSPO) PET ligand [(18)F]DAA1106.
Lithium bis(trifluoromethylsulfone)imide (LiTFSI), a promising electrolyte for high energy lithium batteries, forms several stable solvates having low melting points in aprotic solvents. In a previous study (D. Brouillette, G. Perron and J. E. Desnoyers, J. Solution Chem., 1998, 27, 151), it was suggested, based on thermodynamic studies, that such stable solvates may persist in solution and influence their properties. To verify this hypothesis, phase diagrams and Raman spectra have been measured for solutions of LiTFSI in acetonitrile, propylene carbonate and glymes (n(ethyleneglycol) dimethyl ether or Gn), which have the chemical structure CH 3 -O-(CH 2 -CH 2 -O) n -CH 3 for n ¼ 1 to 4 and 10. The relative intensities of the LiTFSI and solvent Raman bands are proportional to the concentration for systems without solvates. The systems for which stable solvates were identified in the phase diagram show important changes in the relative intensities for both the LiTFSI and the solvent Raman bands at concentrations corresponding to particular stoichiometries and support the conclusion that stable solvates are present in the solutions. The structure of the crystalline G1:LiTFSI solvate was determined by X-ray crystallography. Structures for (G2) 2 :LiTFSI and (G1) 3 :LiTFSI solvates are proposed.
[(18)F]FMTEB, [(18)F]FPEB, [(18)F]flumazenil, [(18)F]DAA1106, [(18)F]MFBG, [(18)F]FDOPA, [(18)F]FMT and [(18)F]FDA are prepared from the corresponding arylboronic esters and [(18)F]KF/K222 in the presence of Cu(OTf)2py4. The method was successfully applied using three radiosynthetic platforms, and up to 26 GBq of non-carrier added starting activity of (18)F-fluoride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.