A previous study on the feeding responses of tsetse flies, Glossina morsitans morsitans, implicated the existence of allomonal barriers, both volatile and nonvolatile, on the nonpreferred host, waterbuck, Kobus defassa. In the present study, electroantennogram-active compounds in odors from waterbuck were compared with those of two preferred hosts of tsetse flies, buffalo, Syncerus caffer, and ox, Bos indicus. Odors from the three bovids were trapped on activated charcoal and/or reverse-phase (octadecyl bonded) silica and analyzed with a gas chromatography-linked electroantennographic detector (GC-EAD) and, where possible, identified by using gas chromatography-linked mass spectrometry (GC-MS) and chromatographic comparisons with authentic samples. The GC-EAD profiles (with G. m. morsitans antennae) of the odors of the two preferred hosts were comparable, comprising medium-chain, saturated or unsaturated aldehydes and phenols, with buffalo emitting a few more EAG-active aldehydes. Waterbuck odor gave a richer profile, consisting of fewer aldehydes but more phenolic components and a series of 2-ketones (C-C13) and delta-octalactone. This bovid also emits moderate amounts of C5-C9 straight-chain fatty acids, some of which were detected in buffalo and ox only in trace amounts. However, these did not elicit significant GC-EAD responses. Waterbuck profiles from the antennae of G. pallidipes showed broad similarity to those from G. m. morsitans, although the composition of aldehydes and ketones was somewhat different, indicating species-specific difference in the detection of host odors. Certain waterbuck-specific EAG-active components, particularly the 2-ketones and lactone, constitute a candidate allomonal blend in waterbuck odor.
In a previous study, comparison of the behavior of teneral Glossina morsitans morsitans on waterbuck, Kobus defassa (a refractory host), and on two preferred hosts, buffalo, Syncerus caffer, and ox, Bos indicus, suggested the presence of allomones in the waterbuck odor. Examination of the volatile odors by coupled gas chromatography-electroantennographic detection showed that the antennal receptors of the flies detected constituents common to the three bovids (phenols and aldehydes), as well as a series of compounds specific to waterbuck, including C8-C13 methyl ketones, delta-octalactone, and phenols. In this study, behavioral respones of teneral G. m. morsitans to different blends of these compounds were evaluated in a choice wind tunnel. The flies' responses to known or putative attractant blends (the latter comprising EAG-active constituents common to all three animals and those common to buffalo and ox, excluding the known tseste attractants, 4-methylphenol and 3-n-propylphenol), and to putative repellent (the blend of EAG-active compounds specific to the waterbuck volatiles), were different. A major difference related to their initial and final behaviors. When a choice of attractant blends (known or putative) and clean air was presented, flies initially responded by flying upwind toward the odor source, but later moved downwind and rested on either side of the tunnel, with some preference for the side with the odor treatments. However, when presented with a choice of waterbuck-specific blend (putative repellent) and clean air, the flies' initial reaction appeared random; flies flew upwind on either side, but eventually settled down on the odorless side of the tunnel. Flies that flew up the odor plume showed an aversion behavior to the blend. The results lend further support to previous indications for the existence of a tsetse repellent blend in waterbuck body odor and additional attractive constituents in buffalo and ox body odors.
Thin porridge from cereals and starchy tubers is a common complementary food in Sub Saharan Africa. It may be high in antinutrients, low in energy, and nutrient density hence inadequate in providing infants' high energy and nutrients requirements per unit body weight. Consequently, undernourishment levels among children under 5 years are high. Therefore, there is need to avail nutrient‐dense complementary foods especially for children in low‐resource settings. The study was aimed at developing a nutrient‐dense complementary food from amaranth and sorghum grains. Amaranth grain, a pseudocereal, though rarely used as a complementary food in Kenya has a higher nutritional quality than other staples. Plant‐based foods are known to have high levels of antinutrients. Steeping and germination were used to reduce the levels of antinutrients and enhance the bioavailability of minerals in the grains. Various steeped and germinated amaranth and sorghum grains formulations were made to find the ratio with the highest nutrient content and lowest antinutrient levels. The 90% amaranth‐sorghum grains formulation had significantly (F = 32.133, P < 0.05) higher energy (5 kcal per g on dry weight basis) than the other formulations and a protein content of 14.4%. This is higher than the estimated protein needs from complementary foods even for a 12–23 months child of low breast milk intake (9.1 g/d). Antinutrients could not be detected which could imply enhanced nutrient bioavailability. Therefore, a nutrient‐dense complementary food product was developed from steeped and germinated amaranth and sorghum grains with 90% amaranth grain. In ready to eat form, it would give an energy content of 1.7 kcal per g (dilution of 1:2 amaranth‐sorghum flour to water) and 1.2 kcal per g (dilution of 1:4 amaranth‐sorghum flour to water). It can be used as a nutrient‐dense complementary food and for other vulnerable groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.