Tumor oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state 1 , but direct pharmacological inhibition of transcription factors has thus far proven difficult 2 . However, the transcriptional machinery contains various enzymatic co-factors that can be targeted for development of new therapeutic candidates 3 , including cyclin-dependent kinases (CDKs) 4 . Here we present the discovery and characterization of the first covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell line profiling indicates that a subset of cancer cell lines, including T-ALL, exhibit exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and this transcription factor’s key role in the core transcriptional regulatory circuitry of these tumor cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumor types exhibiting extreme dependencies on transcription for maintenance of the oncogenic state.
SUMMARY The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a novel covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.
SUMMARY Triple-negative breast cancer (TNBC) is a highly aggressive form of breast cancer that exhibits extremely high levels of genetic complexity and yet a relatively uniform transcriptional program. We postulate that TNBC might be highly dependent on uninterrupted transcription of a key set of genes within this gene expression program and might therefore be exceptionally sensitive to inhibitors of transcription. Utilizing kinase inhibitors and CRISPR/Cas9-mediated gene editing, we show here that triple-negative but not hormone receptor-positive breast cancer cells are exceptionally dependent on CDK7, a transcriptional cyclin-dependent kinase. TNBC cells are unique in their dependence on this transcriptional CDK and suffer apoptotic cell death upon CDK7 inhibition. An “Achilles cluster” of TNBC-specific genes is especially sensitive to CDK7 inhibition and frequently associated with super-enhancers. We conclude that CDK7 mediates transcriptional addiction to a vital cluster of genes in TNBC and CDK7 inhibition may be a useful therapy for this challenging cancer.
SUMMARY Small cell lung cancer (SCLC) is an aggressive disease with high mortality. The identification of effective pharmacological strategies to target SCLC biology represents an urgent need. Using a high-throughput cellular screen of a diverse chemical library we observe that SCLC is sensitive to transcription-targeting drugs, and in particular to THZ1, a recent identified covalent inhibitor of cyclin-dependent kinase 7 (CDK7). We find that expression of super-enhancer associated transcription factor genes including MYC family proto-oncogenes and neuroendocrine lineage-specific factors are highly vulnerability to THZ1 treatment. We propose that downregulation of these transcription factors contributes, in part, to SCLC sensitivity to transcriptional inhibitors and that THZ1 represents a prototype drug for tailored SCLC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.