Summary We present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor. We uncovered new driver mutations in the replication-repair-associated DNA polymerases and a distinct impact of microsatellite instability and replication repair deficiency on the scale of mutation load. Unbiased clustering, based on mutational context, revealed clinically relevant subgroups regardless of the tumors' tissue of origin, highlighting similarities in evolutionary dynamics leading to hypermutation. Mutagens, such as UV light, were implicated in unexpected cancers, including sarcomas and lung tumors. The order of mutational signatures identified previous treatment and germline replication repair deficiency, which improved management of patients and families. These data will inform tumor classification, genetic testing, and clinical trial design.
BackgroundX-chromosome inactivation (XCI) results in the silencing of most genes on one X chromosome, yielding mono-allelic expression in individual cells. However, random XCI results in expression of both alleles in most females. Allelic imbalances have been used genome-wide to detect mono-allelically expressed genes. Analysis of X-linked allelic imbalance in females with skewed XCI offers the opportunity to identify genes that escape XCI with bi-allelic expression in contrast to those with mono-allelic expression and which are therefore subject to XCI.ResultsWe determine XCI status for 409 genes, all of which have at least five informative females in our dataset. The majority of genes are subject to XCI and genes that escape from XCI show a continuum of expression from the inactive X. Inactive X expression corresponds to differences in the level of histone modification detected by allelic imbalance after chromatin immunoprecipitation. Differences in XCI between populations and between cell lines derived from different tissues are observed.ConclusionsWe demonstrate that allelic imbalance can be used to determine an inactivation status for X-linked genes, even without completely non-random XCI. There is a range of expression from the inactive X. Genes escaping XCI, including those that do so in only a subset of females, cluster together, demonstrating that XCI and location on the X chromosome are related. In addition to revealing mechanisms involved in cis-gene regulation, determining which genes escape XCI can expand our understanding of the contributions of X-linked genes to sexual dimorphism.
Gains and losses of DNA are prevalent in cancer and emerge as a consequence of inter-related processes of replication stress, mitotic errors, spindle multipolarity and breakage–fusion–bridge cycles, among others, which may lead to chromosomal instability and aneuploidy1,2. These copy number alterations contribute to cancer initiation, progression and therapeutic resistance3–5. Here we present a conceptual framework to examine the patterns of copy number alterations in human cancer that is widely applicable to diverse data types, including whole-genome sequencing, whole-exome sequencing, reduced representation bisulfite sequencing, single-cell DNA sequencing and SNP6 microarray data. Deploying this framework to 9,873 cancers representing 33 human cancer types from The Cancer Genome Atlas6 revealed a set of 21 copy number signatures that explain the copy number patterns of 97% of samples. Seventeen copy number signatures were attributed to biological phenomena of whole-genome doubling, aneuploidy, loss of heterozygosity, homologous recombination deficiency, chromothripsis and haploidization. The aetiologies of four copy number signatures remain unexplained. Some cancer types harbour amplicon signatures associated with extrachromosomal DNA, disease-specific survival and proto-oncogene gains such as MDM2. In contrast to base-scale mutational signatures, no copy number signature was associated with many known exogenous cancer risk factors. Our results synthesize the global landscape of copy number alterations in human cancer by revealing a diversity of mutational processes that give rise to these alterations.
In the past it has been proven difficult to separate and characterize collagen from muscle because of its relative paucity in this tissue. The present report presents a comprehensive methodology, combining methods previously described by McCollester [(1962) [301][302][303][304][305][306][307][308][309][310][311][312], in which the three major tracts of muscle connective tissue, the epimysium, perimysium and endomysium, may be prepared and separated from the bulk of muscle protein. Connective tissue thus prepared may be washed with salt and treated with pepsin to liberate soluble native collagen, or can be washed with sodium dodecyl sulphate to produce a very clean insoluble collagenous product. This latter type of preparation may be used for quantification of the ratio of the major genetic forms of collagen or for measurement of reducible cross-link content to give reproducible results. It was shown that both the epimysium and perimysium contain type I collagen as the major component and type III collagen as a minor component; perimysium also contained traces of type V collagen. The endomysium, the sheaths of individual muscle fibres, was shown to contain both type I and type III collagen as major components. Type V collagen was also present in small amounts, and type IV collagen, the collagenous component of basement membranes, was purified from endomysial preparations. This is the first biochemical demonstration of the presence of type IV collagen in muscle endomysium. The preparation was shown to be very similar to other type IV collagens from other basement membranes on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and was indistinguishable from EHS sarcoma collagen and placenta type IV collagen in the electron microscope after rotary shadowing.Collagen has long been known to form the main structural constituent of the connective tissue of muscle, providing a network of fibres throughout the body of each muscle. In skeletal muscle the tendon is continuous with both the epimysium (the muscle sheath) and the proliferative perimysium, which forms the bulk of the network mentioned above. At the microscopic level each muscle fibre is surrounded by a basement-membrane sheath, the endomysium, which has an associated reticular layer of fine collagen fibres (Hamm, 1965). The collagen network is continuous throughout the muscle from the endomysium to the tendon. In this way the force of muscle contraction is effectively and efficiently transmitted through the connective tissue to the bone.Collagen forms only 1-9% of the fat-free dry Abbreviation used: SDS, sodium dodecyl sulphate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.