A peptide has been isolated from ovine hypothalamus which, at 1 x 10(-9)M, inhibits secretion in vitro of immunoreactive rat or human growth hormones and is similarly active in vivo in rats. Its structure is H-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH The synthetic replicate is biologically active.
In this 'double-blind', randomized, placebo-controlled phase II trial, we compared an altered peptide ligand of myelin basic protein with placebo, evaluating their safety and influence on magnetic resonance imaging in relapsing-remitting multiple sclerosis. A safety board suspended the trial because of hypersensitivity reactions in 9% of the patients. There were no increases in either clinical relapses or in new enhancing lesions in any patient, even those with hypersensitivity reactions. Secondary analysis of those patients completing the study showed that the volume and number of enhancing lesions were reduced at a dose of 5 mg. There was also a regulatory type 2 T helper-cell response to altered peptide ligand that cross-reacted with the native peptide.
A 44 amino acid peptide with growth hormone-releasing activity has been isolated from a human tumor of the pancreas that had caused acromegaly. The primary structure of the tumor-derived peptide is H-Tyr-Ala-Asp-Ala-Ile-Phe-Thr-Asn-Ser-Tyr-Arg-Lys-Val-Leu-Gly-Gln-Leu-Ser-Ala- Arg-Lys-Leu-Leu-Gln-Asp-Ile-Met-Ser-Arg-Gln-Gln-Gly-Glu-Ser-Asn-Gln-Glu-Arg-Gly -Ala-Arg-Ala-Arg-Leu-NH2. The synthetic replicate has full biological activity in vitro and in vivo specifically to stimulate the secretion of immunoreactive growth hormone. The tumor-derived peptide is identical in biological activity and similar in physiochemical properties to the still uncharacterized growth hormone-releasing factor present in extracts of hypothalamic tissues.
Myostatin, a transforming growth factor-beta (TGF-beta) super-family member, has been well characterized as a negative regulator of muscle growth and development. Myostatin has been implicated in several forms of muscle wasting including the severe cachexia observed as a result of conditions such as AIDS and liver cirrhosis. Here we show that Myostatin induces cachexia by a mechanism independent of NF-kappaB. Myostatin treatment resulted in a reduction in both myotube number and size in vitro, as well as a loss in body mass in vivo. Furthermore, the expression of the myogenic genes myoD and pax3 was reduced, while NF-kappaB (the p65 subunit) localization and expression remained unchanged. In addition, promoter analysis has confirmed Myostatin inhibition of myoD and pax3. An increase in the expression of genes involved in ubiquitin-mediated proteolysis is observed during many forms of muscle wasting. Hence we analyzed the effect of Myostatin treatment on proteolytic gene expression. The ubiquitin associated genes atrogin-1, MuRF-1, and E214k were upregulated following Myostatin treatment. We analyzed how Myostatin may be signaling to induce cachexia. Myostatin signaling reversed the IGF-1/PI3K/AKT hypertrophy pathway by inhibiting AKT phosphorylation thereby increasing the levels of active FoxO1, allowing for increased expression of atrophy-related genes. Therefore, our results suggest that Myostatin induces cachexia through an NF-kappaB-independent mechanism. Furthermore, increased Myostatin levels appear to antagonize hypertrophy signaling through regulation of the AKT-FoxO1 pathway.
The two major mitogenic polypeptides for endothelial cells have been purified to homogeneity. The complete primary structure of bovine pituitary basic fibroblast growth factor (FGF) and the amino-terminal amino acid sequence of bovine brain acidic FGF have been established by gas-phase sequence analyses. Homogeneous preparations of these polypeptides are potent mitogens (basic FGF, ED50 60 pg/ml; acidic FGF ED50 6000 pg/ml) for many diverse cell types including capillary endothelial cells, vascular smooth muscle cells, and adrenocortical and granulosa cells; in vivo, basic FGF is a powerful angiogenic agent in the chick chorioallantoic membrane assay. The available protein sequence data demonstrate the existence of significant structural homology between the two polypeptides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.