Repurposing efforts have dominantly focused on racemic CQ with no studies exploring the effect of the (R) and (S) enantiomers, which might potentially have additional benefits in other diseases. Additionally, evaluating other similarly acting antimalarials in clinical use and structural analogs could help maximize the intrinsic value of the 4-aminoquinolines. With regard to cancer therapy, successful repurposing of CQ-containing compounds will require linking the mode of action of these antimalarials with the signaling pathways that drive cancer cell proliferation to facilitate the development of a 4-amino-7-chloroquinoline that can be used as a synergistic partner in anticancer combination chemotherapy.
Toxicity of natural products arising from their metabolic biotransformation into reactive chemical intermediates is an important reason for high attrition rates in early drug discovery efforts. Screening promising natural products for their likelihood to form such metabolites is therefore an important step in identifying potential liabilities in the drug development process. However, such screening is complicated by the need to have test methods that are sensitive, reliable, accurate, efficient, and cost-effective enough to allow for routine identification and characterization of the reactive metabolites. These metabolites are typically formed in minute quantities, usually through minor metabolic pathways, and, due to their highly reactive and therefore transient chemical nature, pose considerable analytical challenges in attempts to determine their properties. Understanding the formation of reactive metabolites may be used as the basis for synthetic chemical modification of parent natural products aimed at bypassing such harmful bioactivation. This paper highlights the general principles and protocols commonly used to predict and study the formation of reactive metabolites in vitro and how the data obtained from such studies can be used in the development of safer drugs from natural products.
The diversity of semi-synthetic artemisinin derivatives has been limited to the same design strategy of modifying the artemisinin molecule at the same positions due to inherent synthetic challenges. To address this, future endeavors should include: the use of biotransformation strategies to modify other positions in the sesquiterpene ring while retaining the endoperoxide bridge; the design and synthesis of synthetic ozonides based on the pharmacophoric endoperoxide motif and drug repositioning approaches to artemisinin-based combination therapy. A better understanding of the mechanism of action of artemisinin derivatives and their biomolecular targets may provide an invaluable tool for the development of derivatives with a wider array of activity and greater clinical utility than currently appreciated.
Chlorpromazine (CPZ) metabolites naturally generated in vivo were synthesized via a non-classical Polonovski reaction. CPZ and the synthesized metabolites exhibited clear synergy when tested in combination with a number of antituberculosis drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.