The goal of adaptive sampling in the ocean is to predict the types and locations of additional ocean measurements that would be most useful to collect. Quantitatively, what is most useful is defined by an objective function and the goal is then to optimize this objective under the constraints of the available observing network. Examples of objectives are better oceanic understanding, to improve forecast quality, or to sample regions of high interest. This work provides a new path-planning scheme for the adaptive sampling problem. We define the path-planning problem in terms of an optimization framework and propose a method based on mixed integer linear programming (MILP). The mathematical goal is to find the vehicle path that maximizes the line integral of the uncertainty of field estimates along this path. Sampling this path can improve the accuracy of the field estimates the most. While achieving this objective, several constraints must be satisfied and are implemented. They relate to vehicle motion, intervehicle coordination, communication, collision avoidance, etc. The MILP formulation is quite powerful to handle different problem constraints and flexible enough to allow easy extensions of the problem. The formulation covers single-and multiple-vehicle cases as well as singleand multiple-day formulations. The need for a multiple-day formulation arises when the ocean sampling mission is optimized for several days ahead. We first introduce the details of the formulation, then elaborate on the objective function and constraints, and finally, present a varied set of examples to illustrate the applicability of the proposed method.
This paper describes the experimental implementation of an online algorithm for cooperative localization of submerged autonomous underwater vehicles (AUVs) supported by an autonomous surface craft. Maintaining accurate localization of an AUV is difficult because electronic signals, such as GPS, are highly attenuated by water. The usual solution to the problem is to utilize expensive navigation sensors to slow the rate of dead-reckoning divergence. We investigate an alternative approach that utilizes the position information of a surface vehicle to bound the error and uncertainty of the on-board position estimates of a low-cost AUV. This approach uses the Woods Hole Oceanographic Institution (WHOI) acoustic modem to exchange vehicle location estimates while simultaneously estimating inter-vehicle range. A study of the system observability is presented so as to motivate both the choice of filtering approach and surface vehicle path planning. The first contribution of this paper is the presentation of an experiment in which an extended Kalman filter (EKF) implementation of the concept ran online on-board an OceanServer Iver2 AUV while supported by an autonomous surface vehicle moving adaptively. The second contribution of this paper is provide a quantitative performance comparison of three estimators: particle filtering (PF), Nonlinear Least Squares optimization (NLS), and the EKF for a mission using three autonomous surface craft (two operating in the AUV role). Our results indicate that the PF and NLS estimators outperform the EKF, with NLS providing the best performance.
Solid Freeform Fabrication SFF processes have demonstrated the ability to produce parts with locally controlled composition. In the limit, processes such as 3D Printing can create parts with composition control on a length scale of 100 m. To exploit this potential, new methods to model, exchange, and process parts with local composition control need to be developed. An approach to modeling a part's geometry, topology, and composition is presented. This approach is based on subdividing the solid model into sub-regions and associating analytic composition blending functions with each region. These blending functions de ne the composition throughout the model as mixtures of the primary materials available to the SFF machine. Design tools based u p on distance functions are also introduced, such as the speci cation of composition as a function of the distance from the surface of a part. Finally, the role of design rules restricting maximum and minimum concentrations is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.