Natural Language Inference (NLI) is fundamental to many Natural Language Processing (NLP) applications including semantic search and question answering. The NLI problem has gained significant attention due to the release of large scale, challenging datasets. Present approaches to the problem largely focus on learning-based methods that use only textual information in order to classify whether a given premise entails, contradicts, or is neutral with respect to a given hypothesis. Surprisingly, the use of methods based on structured knowledge -a central topic in artificial intelligence -has not received much attention vis-a-vis the NLI problem. While there are many open knowledge bases that contain various types of reasoning information, their use for NLI has not been well explored. To address this, we present a combination of techniques that harness external knowledge to improve performance on the NLI problem in the science questions domain. We present the results of applying our techniques on text, graph, and text-and-graph based models; and discuss the implications of using external knowledge to solve the NLI problem. Our model achieves close to state-of-the-art performance for NLI on the SciTail science questions dataset.1 Example based on the SNLI dataset (Bowman et al. 2015).
Abstract. We consider the two-sided stable matching setting in which there may be uncertainty about the agents' preferences due to limited information or communication. We consider three models of uncertainty:(1) lottery model -in which for each agent, there is a probability distribution over linear preferences, (2) compact indifference model -for each agent, a weak preference order is specified and each linear order compatible with the weak order is equally likely and (3) joint probability model -there is a lottery over preference profiles. For each of the models, we study the computational complexity of computing the stability probability of a given matching as well as finding a matching with the highest probability of being stable. We also examine more restricted problems such as deciding whether a certainly stable matching exists. We find a rich complexity landscape for these problems, indicating that the form uncertainty takes is significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.