Here we describe the evolution of a silicon, MEMS-based chip design developed for infrared gas and chemical detection. The “Sensor-Chip,” with integrated photonic crystal and reflective optics, employs narrow-band optical emission/absorption for selective identification of gas and chemical species. Gas concentration is derived from attenuated optical power, which results in a change in device set point. This change in temperature results in a change in device resistance, via the TCR of the Si. Thermal non-uniformity across the device results in optical “noise” and accelerates localized thermal and electrical failures. This paper reports the influence of processing and design, on achieving uniformly heated, high reliability devices. Specifically, we examine the role of contacts, drive scheme, and device thermal distribution on chip design. Experimentally the temperature uniformity was characterized using an infrared camera. Experimental results indicate that the design of the contact areas in combination with the device design is essential for the reliable performance of the Sensor-Chip. Redesigned devices were fabricated and demonstrated as highly-selective gas and chemical sensors.
MEMS devices have unique packaging considerations compared to conventional semiconductor devices. They tend to have relatively large die size and many architectures cannot tolerate elevated temperatures. Often these devices require a vacuum environment for efficient operation. While advances have been made in hermetic packaging of MEMS devices, vacuum packaging remains elusive. One significant problem in developing vacuum sealing has been the inability to determine, readily and non-destructively, the vacuum level inside the package. We have previously described the development of a silicon MEMS-based chip design, “SensorChip™,” with integrated photonic crystal and reflective optics, which uses narrow-band optical emission and absorption for selective identification of gas and chemical species. Because the power consumption required to maintain a specific temperature is directly related to the vacuum level, these devices effectively serve as microscopic Pirani gauges – local vacuum sensors in the moderate vacuum range (0.01 to 1.0 torr) of interest to MEMS devices. Using the membrane itself as a vacuum gauge during sealing has proven to be an invaluable tool in developing a robust vacuum seal in a leadless chip carrier package. It has enabled us to optimize choice of design, materials and processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.