Introduction Physical human-robot interaction offers a compelling platform for assessing recovery from neurological injury; however, robots currently used for assessment have typically been designed for the requirements of rehabilitation, not assessment. In this work, we present the design, control, and experimental validation of the SE-AssessWrist, which extends the capabilities of prior robotic devices to include complete wrist range of motion assessment in addition to stiffness evaluation. Methods The SE-AssessWrist uses a Bowden cable-based transmission in conjunction with series elastic actuation to increase device range of motion while not sacrificing torque output. Experimental validation of robot-aided wrist range of motion and stiffness assessment was carried out with five able-bodied individuals. Results The SE-AssessWrist achieves the desired maximum wrist range of motion, while having sufficient position and zero force control performance for wrist biomechanical assessment. Measurements of two-degree-of-freedom wrist range of motion and stiffness envelopes revealed that the axis of greatest range of motion and least stiffness were oblique to the conventional anatomical axes, and approximately parallel to each other. Conclusions Such an assessment could be beneficial in the clinic, where standard clinical measures of recovery after neurological injury are subjective, labor intensive, and graded on an ordinal scale.
BackgroundNon-invasive neuromodulation using translingual neurostimulation (TLNS) has been shown to advance rehabilitation outcomes, particularly when paired with physical therapy (PT). Together with motor gains, patient-reported observations of incidental improvements in cognitive function have been noted. Both studies in healthy individuals and case reports in clinical populations have linked TLNS to improvements in attention-related cognitive processes. We investigated if the use of combined TLNS/PT would translate to changes in objective neurophysiological cognitive measures in a real-world clinical sample of patients from two separate rehabilitation clinics.MethodsBrain vital signs were derived from event-related potentials (ERPs), specifically auditory sensation (N100), basic attention (P300), and cognitive processing (N400). Additional analyses explored the attention-related N200 response given prior evidence of attention effects from TLNS/PT. The real-world patient sample included a diverse clinical group spanning from mild-to-moderate traumatic brain injury (TBI), stroke, Multiple Sclerosis (MS), Parkinson’s Disease (PD), and other neurological conditions. Patient data were also acquired from a standard clinical measure of cognition for comparison.ResultsResults showed significant N100 variation between baseline and endpoint following TLNS/PT treatment, with further examination showing condition-specific significant improvements in attention processing (i.e., N100 and N200). Additionally, CogBAT composite scores increased significantly from baseline to endpoint.DiscussionThe current study highlighted real-world neuromodulation improvements in neurophysiological correlates of attention. Overall, the real-world findings support the concept of neuromodulation-related improvements extending beyond physical therapy to include potential attention benefits for cognitive rehabilitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.