Summary Nrf2 regulates the expression of numerous anti-oxidant, anti-inflammatory, and metabolic genes. We observed that, paradoxically, Nrf2 protein levels decline in the livers of aged rats despite the inflammatory environment evident in that organ. To examine the cause(s) of this loss, we investigated the age-related changes in Nrf2 protein homeostasis and activation in cultured hepatocytes from young (4-6 months) and old (24-28 months) Fischer 344 rats. While no age-dependent change in Nrf2 mRNA levels was observed (p>0.05), Nrf2 protein content, and the basal and anetholetrithione (A3T)-induced expression of Nrf2-dependent genes were attenuated with age. Conversely, overexpression of Nrf2 in cells from old animals reinstated gene induction. Treatment with A3T, along with bortezomib to inhibit degradation of existing protein, caused Nrf2 to accumulate significantly in cells from young animals (p<0.05), but not old, indicating a lack of new Nrf2 synthesis. We hypothesized that the loss of Nrf2 protein synthesis with age may partly stem from an age-related increase in microRNA inhibition of Nrf2 translation. Microarray analysis revealed that six microRNAs significantly increase >2-fold with age (p<0.05). One of these, miRNA-146a, is predicted to bind Nrf2 mRNA. Transfection of hepatocytes from young rats with a miRNA-146a mimic caused a 55% attenuation of Nrf2 translation that paralleled the age-related loss of Nrf2. Overall, these results provide novel insights for the age-related decline in Nrf2 and identify new targets to maintain Nrf2-dependent detoxification with age.
Waterfowl and shorebirds are well-recognized natural reservoirs of low-pathogenicity avian influenza viruses (LPAIV); however, little is known about the role of passerines in avian influenza virus ecology. Passerines are abundant, widespread, and commonly come into contact with free-ranging birds as well as captive game birds and poultry. We inoculated and subsequently challenged house sparrows (Passer domesticus) and European starlings (Sturnus vulgaris) with wild-bird origin LPAIV H3N8 to evaluate their potential role in transmission. Oropharyngeal shedding was short lived, and was detected in more starlings (97.2%) than sparrows (47.2%; n=36 of each). Cloacal shedding was rare in both species (8.3%; n=36 of each) and no cage-mate transmission occurred. Infectious LPAIV was cultured from oropharyngeal and cloacal swabs and gastrointestinal and respiratory tissues from both species. Seroconversion was detected as early as 3 days post inoculation (d.p.i.) (16.7% of sparrows and 0% of starlings; n=6 each); 50% of these individuals seroconverted by 5 d.p.i., and nearly all birds (97%; n=35) seroconverted by 28 d.p.i. In general, pre-existing homologous immunity led to reduced shedding and increased antibody levels within 7 days of challenge. Limited shedding and lack of cage-mate transmission suggest that passerines are not significant reservoirs of LPAIV, although species differences apparently exist. Passerines readily and consistently seroconverted to LPAIV, and therefore inclusion of passerines in epidemiological studies of influenza outbreaks in wildlife and domestic animals may provide further insight into the potential involvement of passerines in avian influenza virus transmission ecology.
Isolated hepatocytes from young (4–6 mo) and old (24–26 mo) F344 rats were exposed to increasing concentrations of menadione, a vitamin K derivative and redox cycling agent, to determine whether the age-related decline in Nrf2-mediated detoxification defenses resulted in heightened susceptibility to xenobiotic insult. An LC50 for each age group was established, which showed that aging resulted in a nearly 2-fold increase in susceptibility to menadione (LC50 for young: 405 μM; LC50 for old: 275 μM). Examination of the known Nrf2-regulated pathways associated with menadione detoxification revealed, surprisingly, that NAD(P)H: quinone oxido-reductase 1 (NQO1) protein levels and activity were induced 9-fold and 4-fold with age, respectively (p=0.0019 and p=0.018; N=3), but glutathione peroxidase 4 (GPX4) declined by 70% (p=0.0043; N=3). These results indicate toxicity may stem from vulnerability to lipid peroxidation instead of inadequate reduction of menadione semi-quinone. Lipid peroxidation was 2-fold higher, and GSH declined by a 3-fold greater margin in old versus young rat cells given 300 µM menadione (p<0.05 and p≤0.01 respectively; N=3). We therefore provided 400 µM N-acetyl-cysteine (NAC) to hepatocytes from old rats before menadione exposure to alleviate limits in cysteine substrate availability for GSH synthesis during challenge. NAC pretreatment resulted in a >2-fold reduction in cell death, suggesting that the age-related increase in menadione susceptibility likely stems from attenuated GSH-dependent defenses. This data identifies cellular targets for intervention in order to limit age-related toxicological insults to menadione and potentially other redox cycling compounds.
Background α-Lipoic acid (LA) is a dietary supplement for maintaining energy balance, but well-controlled clinical trials in otherwise healthy, overweight adults using LA supplementation are lacking. Objectives The primary objective was to evaluate whether LA supplementation decreases elevated plasma triglycerides in overweight or obese adults. Secondary aims examined if LA promotes weight loss and improves oxidative stress and inflammation. Methods Overweight adults [n = 81; 57% women; 21–60 y old; BMI (in kg/m2) ≥ 25] with elevated plasma triglycerides ≥100 mg/dL were enrolled in a 24-wk, randomized, double-blind, controlled trial, assigned to either (R)-α-lipoic acid (R-LA; 600 mg/d) or matching placebo, and advised not to change their diet or physical activity. Linear models were used to evaluate treatment effects from baseline for primary and secondary endpoints. Results R-LA did not decrease triglyceride concentrations, but individuals on R-LA had a greater reduction in BMI at 24 wk than the placebo group (−0.8; P = 0.04). The effect of R-LA on BMI was correlated to changes in plasma triglycerides (r = +0.50, P = 0.004). Improvement in body weight was greater at 24 wk in R-LA subgroups than in placebo subgroups. Women and obese participants (BMI ≥ 35) showed greater weight loss (−5.0% and −4.8%, respectively; both P < 0.001) and loss of body fat (−9.4% and −8.6%, respectively; both P < 0.005). Antioxidant gene expression in mononuclear cells at 24 wk was greater in the R-LA group (Heme oxygenase 1 [HMOX1] : +22%; P = 0.02) than in placebo. Less urinary F2-isoprostanes (−25%; P = 0.005), blood leukocytes (−10.1%; P = 0.01), blood thrombocytes (−5.1%; P = 0.03), and ICAM-1 (−7.4%; P = 0.04) at 24 wk were also observed in the R-LA group than in placebo. Conclusions Long-term LA supplementation results in BMI loss, greater antioxidant enzyme synthesis, and less potential for inflammation in overweight adults. Improved cellular bioenergetics is also evident in some individuals given R-LA. This trial was registered at clinicaltrials.gov as NCT00765310.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.