On-road, a vehicle experiences unsteady flow conditions due to turbulence in the natural wind, moving through the unsteady wakes of other road vehicles and travelling through the stationary wakes generated by roadside obstacles. There is increasing concern about potential differences between steady flow conditions that are typically used for development and the transient conditions that occur on-road. This work considers whether steady techniques are able to predict the unsteady results measured on-road, the impact of this unsteadiness on the noise perceived in the cabin and whether minor changes made to the geometry of the vehicle could affect this. Both external aerodynamic and acoustic measurements were taken using a full-size vehicle combined with measurements of the noise inside the cabin. Data collection took place on-road under a range of wind conditions to accurately measure the response of the vehicle to oncoming flow unsteadiness, with steady-state measurements taking place in full-scale aeroacoustic wind tunnels.Overall it was demonstrated that, using a variety of temporal and spectral approaches, steady techniques were able to predict unsteady on-road results well enough to assess cabin noise by correctly taking into account the varying on-road flow conditions. Aerodynamic admittance values remained less than unity in the sideglass region of the vehicle, with the exception of the the region nearest the A-pillar. The reducing unsteady energy at frequencies greater than 10 Hz, combined with the corresponding roll-off in admittance, implies that unsteady frequencies below 10 Hz affect the vehicle most, where the response remains quasi-steady.Quasi-steady cabin noise simulations allowed a subjective assessment of the predicted unsteady cabin noise, where the impact of cabin noise modulations were quantified and found to be important to perception. Minor geometry changes affected the sensitivity of cabin noise to changes in yaw angle, altering modulation and therefore having an important impact on the unsteady wind noise perceived on-road.iii DeclarationThe work in this thesis is based on research carried out at the School of Engineering and Computing Sciences, Durham University, UK. No part of this thesis has been submitted elsewhere for any other degree or qualification and it all my own work unless referenced to the contrary in the text.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTA vehicle on the road encounters an unsteady flow due to turbulence in the natural wind, due to the unsteady wakes of other vehicles and as a result of traversing through the stationary wakes of roadside obstacles. There is increasing concern about potential differences between the steady flow conditions used for development and the transient conditions that occur on the road. This paper seeks to determine if measurements made under steady state conditions can be used to predict the aerodynamic behaviour of a vehicle on road in a gusty environment.The project has included measurements in two full size wind tunnels, including using the Pininfarina TGS, steady-state and transient inlet simulations in Exa Powerflow, and a campaign of testing on-road and on-track. The particular focus of this paper is on steady wind tunnel measurements and on-road tests, representing the most established development environment and the environment experienced by the customer, respectively. Measurements of the surface pressure on the front sideglass were used for comparisons as this area exhibits a complex flow which is highly sensitive to yaw angle and which is also an important region, for wind noise considerations in particular.It was found that, if the transient on-road environment is known then steady-state wind tunnel measurements can be used to predict accurately the transient surface pressures, provided the methodology is sufficiently rigorous. Admittance or transfer function techniques are commonly used to compare transient and steady-state results and the limitations of these methods are shown here when the spectra of self-excited and externally imposed unsteadiness overlap. A new method is introduced to obtain a "true" transfer or admittance function, unconfused by the presence of selfexcited unsteadiness. The aerodynamic admittance was found to be close to unity up to a frequency of 2-10 Hz and it then drops progressively.
. (2011) 'The eects of unsteady on-road ow conditions on cabin noise : spectral and geometric dependence.', SAE International journal of passenger cars. Mechanical systems., 4 (1). pp. 120-130. Further information on publisher's website:http://dx.doi.org/10.4271/2011-01-0159Publisher's copyright statement:Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. ABSTRACTThe in-cabin sound pressure level response of a vehicle in yawed wind conditions can differ significantly between the smooth flow conditions of the aeroacoustic wind tunnel and the higher turbulence, transient flow conditions experienced on the road. Previous research has shown that under low turbulence conditions there is close agreement between the variation with yaw of in-cabin sound pressure level on the road and in the wind tunnel. However, under transient conditions, sound pressure levels on the road were found to show a smaller increase due to yaw than predicted by the wind tunnel, specifically near the leeward sideglass region.The research presented here investigates the links between transient flow and aeroacoustics. The effect of small geometry changes upon the aeroacoustic response of the vehicle has been investigated. It was found that sideglass pressures showed close agreement at all turbulence levels while surface sound pressure levels also showed similar behaviour under a wide range of on-road flow conditions. While the overall sideglass sound pressure level changed under the various yaw conditions, the change in shape of the frequency spectrum was less significant.Geometry changes made to a base vehicle reduced the sensitivity of the in-cabin noise to on-road turbulence, showing that shape-change can modify sensitivity to on-road turbulence.
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. AbstractVehicle aeroacoustic performance has a strong influence on customer perception and also has importance for safety and comfort. Wind noise performance was once differentiated by the quality of sealing. Today, achieving competitive wind noise performance also depends on minimising aeroacoustic noise sources generated by the vehicle form, and on attenuation in the noise pathway from sources on the exterior to the vehicle interior. Attenuation in the noise pathway from sources on the exterior to the vehicle interior, especially through glazed surfaces, will continue to play an important role in controlling cabin noise, with a particular emphasis on achieving attenuation efficiently in terms of component mass. The human brain is not only sensitive towards the level of steady broadband noise, but distinctive features such as tonality or modulation draw the attention of the vehicle occupant and impact negatively on perception. Complex indices are often required to define good wind noise performance. This includes the consideration of multiple frequency bands and effects of the range of yaw angles experienced on-road. A key to achieving future vehicle refinement is bringing together an understanding of unsteady onset flow conditions, their impact on cabin sound pressure level and modulation and in turn the impact of noise level and modulation on psychoacoustic perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.