Surgery is a mainstay treatment for patients with solid tumours. However, despite surgical resection with a curative intent and numerous advances in the effectiveness of (neo)adjuvant therapies, metastatic disease remains common and carries a high risk of mortality. The biological perturbations that accompany the surgical stress response and the pharmacological effects of anaesthetic drugs, paradoxically, might also promote disease recurrence or the progression of metastatic disease. When cancer cells persist after surgery, either locally or at undiagnosed distant sites, neuroendocrine, immune, and metabolic pathways activated in response to surgery and/or anaesthesia might promote their survival and proliferation. A consequence of this effect is that minimal residual disease might then escape equilibrium and progress to metastatic disease. Herein, we discuss the most promising proposals for the refinement of perioperative care that might address these challenges. We outline the rationale and early evidence for the adaptation of anaesthetic techniques and the strategic use of anti-adrenergic, anti-inflammatory, and/or antithrombotic therapies. Many of these strategies are currently under evaluation in large-cohort trials and hold promise as affordable, readily available interventions that will improve the postoperative recurrence-free survival of patients with cancer.
Surgery is of paramount importance in the management of solid tumors as definitive resection can be totally curative. Nonetheless, metastatic recurrence after surgery remains a major cause of morbidity and mortality. Interest in the impact of the perioperative period on cancer recurrence is now growing rapidly, with recent research suggesting that some anesthetics or anesthetic techniques may influence the pathophysiology of postoperative metastatic spread. Our review examines the most widely postulated mechanisms for this, including the impact of anesthesia on neuroendocrine and immune function. We also consider evidence for a direct impact on tumor cell signaling pathways based on findings from organ protection research. These studies have demonstrated that certain volatile anaesthetics confer cytoprotective properties to exposed cells and lead to significant upregulation of Hypoxia Inducible Factor-1a (HIF-1a). This ubiquitous transcription factor exerts many effects in cancer: its activity has been linked with more aggressive phenotypes and poorer clinical prognosis. It is proposed that such an upregulation of HIFs in tumor cells by these anesthetics may contribute to a tumor's recurrence by stimulating cytoprotective or protumorigenic behavior in residual cells. Conversely, other anesthetic agents appear to downregulate HIFs or cause negligible effect and thus may prove more suitable for use in cancer surgery. As anesthetic drugs are given at a point of potentially high vulnerability in terms of dissemination and establishment of metastases, there is an urgent need to determine the most appropriate anesthetic strategy for surgical oncology so that the optimal techniques are used to maximize long-term survival.
Background:Surgery is considered to be the first line treatment for solid tumours. Recently, retrospective studies reported that general anaesthesia was associated with worse long-term cancer-free survival when compared with regional anaesthesia. This has important clinical implications; however, the mechanisms underlying those observations remain unclear. We aim to investigate the effect of anaesthetics isoflurane and propofol on prostate cancer malignancy.Methods:Prostate cancer (PC3) cell line was exposed to commonly used anaesthetic isoflurane and propofol. Malignant potential was assessed through evaluation of expression level of hypoxia-inducible factor-1α (HIF-1α) and its downstream effectors, cell proliferation and migration as well as development of chemoresistance.Results:We demonstrated that isoflurane, at a clinically relevant concentration induced upregulation of HIF-1α and its downstream effectors in PC3 cell line. Consequently, cancer cell characteristics associated with malignancy were enhanced, with an increase of proliferation and migration, as well as development of chemoresistance. Inhibition of HIF-1α neosynthesis through upper pathway blocking by a PI-3K-Akt inhibitor or HIF-1α siRNA abolished isoflurane-induced effects. In contrast, the intravenous anaesthetic propofol inhibited HIF-1α activation induced by hypoxia or CoCl2. Propofol also prevented isoflurane-induced HIF-1α activation, and partially reduced cancer cell malignant activities.Conclusions:Our findings suggest that modulation of HIF-1α activity by anaesthetics may affect cancer recurrence following surgery. If our data were to be extrapolated to the clinical setting, isoflurane but not propofol should be avoided for use in cancer surgery. Further work involving in vivo models and clinical trials is urgently needed to determine the optimal anaesthetic regimen for cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.