Justification Logics are special kinds of modal logics which provide a framework for reasoning about epistemic justification. For this, they extend classical boolean propositional logic by a family of necessity-style modal operators "t :", indexed over t by a corresponding set of justification terms, which thus explicitly encode the justification for the necessity assertion in the syntax. With these operators, one can therefore not only reason about modal effects on propositions but also about dynamics inside the justifications themselves. We replace this classical boolean base with Gödel logic, one of the three most prominent fuzzy logics, i.e. special instances of many-valued logics, taking values in the unit interval [0, 1], which are intended to model inference under vagueness. We extend the canonical possible-world semantics for Justification Logic to this fuzzy realm by considering fuzzy accessibility-and evaluation-functions evaluated over the minimum t-norm and establish strong completeness theorems for various fuzzy analogies of prominent extensions for basic Justification Logic.
We use techniques originating from the subdiscipline of mathematical logic called ‘proof mining’ to provide rates of metastability and—under a metric regularity assumption—rates of convergence for a subgradient-type algorithm solving the equilibrium problem in convex optimization over fixed-point sets of firmly nonexpansive mappings. The algorithm is due to H. Iiduka and I. Yamada who in 2009 gave a noneffective proof of its convergence. This case study illustrates the applicability of the logic-based abstract quantitative analysis of general forms of Fejér monotonicity as given by the second author in previous papers.
We provide quantitative information in the form of a rate of metastability in the sense of T. Tao and (under a metric regularity assumption) a rate of convergence for an algorithm approximating zeros of differences of maximally monotone operators due to A. Moudafi by using techniques from 'proof mining', a subdiscipline of mathematical logic. For the rate of convergence, we provide an abstract and general result on the construction of rates of convergence for quasi-Fejér monotone sequences with metric regularity assumptions, generalizing previous results for Fejér monotone sequences due to U.
Accretive and monotone operator theory are central branches of nonlinear functional analysis and constitute the abstract study of set-valued mappings between function spaces. This paper deals with the computational properties of certain large classes of operators, namely accretive and (generalized) monotone set-valued ones. In particular, we develop (and extend) for this field the theoretical framework of proof mining, a program in mathematical logic that seeks to extract computational information from prima facie 'non-computational' proofs from the mainstream literature. To this end, we establish logical metatheorems that guarantee and quantify the computational content of theorems pertaining to accretive and (generalized) monotone set-valued operators. On one hand, our results unify a number of recent case studies, while they also provide characterizations of central analytical notions in terms of proof theoretic ones on the other, which provides a crucial perspective on needed quantitative assumptions in future applications of proof mining to these branches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.