This paper describes a new palladium-catalyzed method for C-H activation/carbon-carbon bond formation with hypervalent iodine arylating agents. This transformation has been applied to a variety of arene and benzylic substrates containing different directing groups (pyridines, quinolines, oxazolidinones, and amides) and proceeds with high levels of regiocontrol. Mechanistic experiments provide preliminary evidence in support of an unusual mechanism for this transformation involving a Pd(II)/Pd(IV) catalytic cycle.
This communication describes the rational development of a PdII-catalyzed method for the direct 2-arylation of indoles using [Ar-IIII-Ar]BF4. These reactions proceed under remarkably mild conditions (often at room temperature and in the presence of ambient air and moisture), and these features are believed to be the result of a PdII/IV mechanism operating in these systems. These transformations can be used to prepare functionally diverse 2-arylated indoles and pyrroles, and their potential utility has been expanded by the development of an in situ procedure for generating the iodine(III) arylating reagents.
This paper describes the substrate scope and mechanism of Pd-catalyzed ligand-directed C-H arylation with diaryliodonium salts. This transformation was applied to the synthesis of a variety of different biaryl products, using directing groups including pyridines, quinolines, pyrrolidinones, and oxazolidinones. Electronically and sterically diverse aryl groups (Ar) were transferred in high yield using iodine(III) reagents of general structure [Mes-I-Ar]BF 4 . Mechanistic investigations have been conducted that establish the kinetic order of the catalytic reaction in each component, determine the resting state of the catalyst and the iodine(III) reagent, quantify the electronic influence of the arylating reagent on the reaction rate, and establish the intra-and intermolecular 1º H/D kinetic isotope effect. On the basis of these studies, this transformation is proposed to proceed via turnover limiting oxidation of the Pd dimer [Pd(N∼C)(OAc)] 2 (N∼C = 3-methyl-2-phenylpyridine) by [Mes-I-Ph]BF 4 . This mechanism implicates a bimetallic high oxidation state Pd species as a key catalytic intermediate. The significance of this and other aspects of the proposed mechanism are discussed in detail.
The unique reactivity of hypervalent iodine reagents with Pd0 and PdII complexes has been exploited for a variety of synthetically useful organic transformations. For example, IIII reagents have been used in place of aryl halides for diverse Pd-catalyzed C-C and C-heteroatom bond-forming cross-coupling reactions. In addition, these reagents have found application in Pd-catalyzed oxidation reactions, including the oxidative functionalization of C-H bonds and the 1,2-aminooxygenation of olefinic substrates. This review discusses both the synthetic utility and the interesting mechanistic features of these transformations.
Halo‐giant: The title compound at the left in the scheme was constructed by the synthesis and coupling of two stereochemically challenging fragments. A comparison of the NMR data of the synthetic material and the natural product indicates that the configuration had been misassigned in the latter. PT=5‐(1‐phenyltetrazolyl).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.