Insulin-like growth factors elicit many responses through activation of phosphoinositide 3-OH kinase (PI3K). The tuberous sclerosis complex (TSC1-2) suppresses cell growth by negatively regulating a protein kinase, p70S6K (S6K1), which generally requires PI3K signals for its activation. Here, we show that TSC1-2 is required for insulin signaling to PI3K. TSC1-2 maintains insulin signaling to PI3K by restraining the activity of S6K, which when activated inactivates insulin receptor substrate (IRS) function, via repression of IRS-1 gene expression and via direct phosphorylation of IRS-1. Our results argue that the low malignant potential of tumors arising from TSC1-2 dysfunction may be explained by the failure of TSC mutant cells to activate PI3K and its downstream effectors.
The tumour suppressor PTEN is a PtdIns(3,4,5)P 3 phosphatase that regulates many cellular processes through direct antagonism of PI 3-kinase signalling. Here we show that oxidative stress activates PI 3-kinase-dependent signalling via the inactivation of PTEN. We use two assay systems to show that cellular PTEN phosphatase activity is inhibited by oxidative stress induced by 1 mM hydrogen peroxide. PTEN inactivation by oxidative stress also causes an increase in cellular PtdIns(3,4,5)P 3 levels and activation of the downstream PtdIns(3,4,5)P 3 target, PKB/Akt, that does not occur in cells lacking PTEN. We then show that endogenous oxidant production in RAW264.7 macrophages inactivates a fraction of the cellular PTEN, and that this is associated with an oxidantdependent activation of downstream signalling. These results show that oxidants, including those produced by cells, can activate downstream signalling via the inactivation of PTEN. This demonstrates a novel mechanism of regulation of the activity of this important tumour suppressor and the signalling pathways it regulates. These results may have signi®cant implications for the many cellular processes in which PtdIns(3,4,5)P 3 and oxidants are produced concurrently.
The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a PI (phosphoinositide) 3-phosphatase that can inhibit cellular proliferation, survival and growth by inactivating PI 3-kinase-dependent signalling. It also suppresses cellular motility through mechanisms that may be partially independent of phosphatase activity. PTEN is one of the most commonly lost tumour suppressors in human cancer, and its deregulation is also implicated in several other diseases. Here we discuss recent developments in our understanding of how the cellular activity of PTEN is regulated, and the closely related question of how this activity is lost in tumours. Cellular PTEN function appears to be regulated by controlling both the expression of the enzyme and also its activity through mechanisms including oxidation and phosphorylation-based control of non-substrate membrane binding. Therefore mutation of PTEN in tumours disrupts not only the catalytic function of PTEN, but also its regulatory aspects. However, although mutation of PTEN is uncommon in many human tumour types, loss of PTEN expression seems to be more frequent. It is currently unclear how these tumours lose PTEN expression in the absence of mutation, and while some data implicate other potential tumour suppressors and oncogenes in this process, this area seems likely to be a key focus of future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.