SUMMARY Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprise a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
BACKGROUND & AIMS Identification of intestinal stem cells (ISCs) has relied heavily on the use of transgenic reporters in mice, but this approach is limited by mosaic expression patterns and difficult to directly apply to human tissues. We sought to identify reliable surface markers of ISCs and establish a robust functional assay to characterize ISCs from mouse and human tissues. METHODS We used immunohistochemistry, real-time reverse-transcription polymerase chain reaction, and fluorescence-activated cell sorting (FACS) to analyze intestinal epithelial cells isolated from mouse and human intestinal tissues. We compared different combinations of surface markers among ISCs isolated based on expression of Lgr5–green fluorescent protein. We developed a culture protocol to facilitate the identification of functional ISCs from mice and then tested the assay with human intestinal crypts and putative ISCs. RESULTS CD44+CD24loCD166+ cells, isolated by FACS from mouse small intestine and colon, expressed high levels of stem cell–associated genes. Transit-amplifying cells and progenitor cells were then excluded based on expression of GRP78 or c-Kit. CD44+CD24loCD166+ GRP78lo/− putative stem cells from mouse small intestine included Lgr5-GFPhi and Lgr5-GFPmed/lo cells. Incubation of these cells with the GSK inhibitor CHIR99021 and the E-cadherin stabilizer Thiazovivin resulted in colony formation by 25% to 30% of single-sorted ISCs. CONCLUSIONS We developed a culture protocol to identify putative ISCs from mouse and human tissues based on cell surface markers. CD44+CD24loCD166+, GRP78lo/−, and c-Kit− facilitated identification of putative stem cells from the mouse small intestine and colon, respectively. CD44+CD24−/loCD166+ also identified putative human ISCs. These findings will facilitate functional studies of mouse and human ISCs.
Wild-type green fluorescent protein (wt-GFP) has a prominent absorbance band centered at ;395 nm, attributed to the neutral chromophore form. The green emission arising upon excitation of this band results from excited-state proton transfer (ESPT) from the chromophore hydroxyl, through a hydrogenbond network proposed to consist of a water molecule and Ser205, to Glu222. Although evidence for Glu222 as a terminal proton acceptor has already been obtained, no evidence for the participation of Ser205 in the proton transfer process exists. To examine the role of Ser205 in the proton transfer, we mutated Ser205 to valine. However, the derived GFP variant S205V, upon excitation at 400 nm, still produces green fluorescence. Time-resolved emission spectroscopy suggests that ESPT contributes to the green fluorescence, and that the proton transfer takes place ;30 times more slowly than in wt-GFP. The crystal structure of S205V reveals rearrangement of Glu222 and Thr203, forming a new hydrogenbonding network. We propose this network to be an alternative ESPT pathway with distinctive features that explain the significantly slowed rate of proton transfer. In support of this proposal, the double mutant S205V/T203V is shown to be a novel blue fluorescent protein containing a tyrosine-based chromophore, yet is incapable of ESPT. The results have implications for the detailed mechanism of ESPT and the photocycle of wt-GFP, in particular for the structures of spectroscopically identified intermediates in the cycle.
Drosophila neuroblasts divide asymmetrically by aligning their mitotic spindle with cortical cell polarity to generate distinct sibling cell types. Neuroblasts asymmetrically localize G␣i, Pins, and Mud proteins; Pins/G␣i direct cortical polarity, whereas Mud is required for spindle orientation. It is currently unknown how G␣i-Pins-Mud binding is regulated to link cortical polarity with spindle orientation. Here, we show that Pins forms a ''closed'' state via intramolecular GoLoco-tetratricopeptide repeat (TPR) interactions, which regulate Mud binding. Biochemical, genetic, and live imaging experiments show that G␣i binds to the first of three Pins GoLoco motifs to recruit Pins to the apical cortex without ''opening'' Pins or recruiting Mud. However, G␣i and Mud bind cooperatively to the Pins GoLocos 2/3 and tetratricopeptide repeat domains, respectively, thereby restricting Pins-Mud interaction to the apical cortex and fixing spindle orientation. We conclude that Pins has multiple activity states that generate cortical polarity and link it with mitotic spindle orientation.cell polarity ͉ cell signaling ͉ differentiation ͉ protein-protein interactions I n complex, multicellular organisms, differentiated cell types are needed to perform diverse functions. One common mechanism for cellular differentiation is asymmetric cell division, in which the mitotic spindle is aligned with the cell polarity axis to generate molecularly distinct sibling cells (1-4). Asymmetric divisions have been proposed to regulate stem cell pool size during development, adult tissue homeostasis, and the uncontrolled proliferation observed in cancer (5). Thus, understanding how the mitotic spindle is coupled to the cell polarity axis is relevant to stem cell and cancer biology. Here, we investigate this question in Drosophila neuroblasts, a model system for studying asymmetric cell division.Drosophila neuroblasts are stem cell-like progenitors that divide asymmetrically to produce a larger self-renewing neuroblast and a smaller ganglion mother cell (GMC) that differentiates into neurons or glia (3). Mitotic neuroblasts segregate factors that promote neuroblast self-renewal to their apical cortex and differentiation factors to their basal cortex. Precise alignment of the mitotic spindle with the neuroblast apical/basal polarity is required for asymmetric cell division and proper brain development: spindle misalignment leads to symmetric cell divisions that expand the neuroblast population and brain size (6-8).
Background & AimsIntestinal epithelial homeostasis is maintained by active-cycling and slow-cycling stem cells confined within an instructive crypt-based niche. Exquisite regulating of these stem cell populations along the proliferation-to-differentiation axis maintains a homeostatic balance to prevent hyperproliferation and cancer. Although recent studies focus on how secreted ligands from mesenchymal and epithelial populations regulate intestinal stem cells (ISCs), it remains unclear what role cell adhesion plays in shaping the regulatory niche. Previously we have shown that the cell adhesion molecule and cancer stem cell marker, CD166/ALCAM (activated leukocyte cell adhesion molecule), is highly expressed by both active-cycling Lgr5+ ISCs and adjacent Paneth cells within the crypt base, supporting the hypothesis that CD166 functions to mediate ISC maintenance and signal coordination.MethodsHere we tested this hypothesis by analyzing a CD166–/– mouse combined with immunohistochemical, flow cytometry, gene expression, and enteroid culture.ResultsWe found that animals lacking CD166 expression harbored fewer active-cycling Lgr5+ ISCs. Homeostasis was maintained by expansion of the transit-amplifying compartment and not by slow-cycling Bmi1+ ISC stimulation. Loss of active-cycling ISCs was coupled with deregulated Paneth cell homeostasis, manifested as increased numbers of immature Paneth progenitors due to decreased terminal differentiation, linked to defective Wnt signaling. CD166–/– Paneth cells expressed reduced Wnt3 ligand expression and depleted nuclear β-catenin.ConclusionsThese data support a function for CD166 as an important cell adhesion molecule that shapes the signaling microenvironment by mediating ISC–niche cell interactions. Furthermore, loss of CD166 expression results in decreased ISC and Paneth cell homeostasis and an altered Wnt microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.