Background1471-2229-9-51: American chestnut (Castanea dentata) was devastated by an exotic pathogen in the beginning of the twentieth century. This chestnut blight is caused by Cryphonectria parasitica, a fungus that infects stem tissues and kills the trees by girdling them. Because of the great economic and ecological value of this species, significant efforts have been made over the century to combat this disease, but it wasn't until recently that a focused genomics approach was initiated. Prior to the Genomic Tool Development for the Fagaceae project, genomic resources available in public databases for this species were limited to a few hundred ESTs. To identify genes involved in resistance to C. parasitica, we have sequenced the transcriptome from fungal infected and healthy stem tissues collected from blight-sensitive American chestnut and blight-resistant Chinese chestnut (Castanea mollissima) trees using ultra high throughput pyrosequencing.
The Chinese chestnut (Castanea mollissima) carries resistance to Cryphonectria parasitica, the fungal pathogen inciting chestnut blight. The pathogen, introduced from Asia, devastated the American chestnut (Castanea dentata) throughout its native range early in the twentieth century. A highly informative genetic map of Chinese chestnut was constructed to extend genomic studies in the Fagaceae and to aid the introgression of Chinese chestnut blight resistance genes into American chestnut. Two mapping populations were established with three Chinese chestnut parents, 'Mahogany', 'Nanking', and 'Vanuxem', totaling 337 progeny. The transcriptome-based genetic map was created with 329 simple sequence repeat and 1,064 single nucleotide polymorphism markers all derived from expressed sequence tag sequences. Genetic maps for each parent were developed and combined to establish 12 consensus linkage groups spanning 742 cM, providing the the most comprehensive genetic map for a Fagaceae species to date. Over 75 % of the mapped markers from the Chinese chestnut consensus genetic map were placed on the physical map using overgo hybridization, providing a fully integrated genetic and physical map resource for Castanea spp. About half (57 %) of the Chinese chestnut genetic map could be assigned to regions of segmental homology with 58 % of the peach (Prunus persica) genome assembly. A three quantitative trait loci (QTL) model for blight resistance was verified using the new genetic markers and an existing interspecies (C. mollissima × C. dentata) F 2 mapping population. Two of the blight resistance QTLs in chestnut shared synteny with two QTLs for powdery mildew resistance in peach, indicating the potential conservation of disease resistance genes at these loci.
BackgroundA century ago, Chestnut Blight Disease (CBD) devastated the American chestnut. Backcross breeding has been underway to introgress resistance from Chinese chestnut into surviving American chestnut genotypes. Development of genomic resources for the family Fagaceae, has focused in this project on Castanea mollissima Blume (Chinese chestnut) and Castanea dentata (Marsh.) Borkh (American chestnut) to aid in the backcross breeding effort and in the eventual identification of blight resistance genes through genomic sequencing and map based cloning. A previous study reported partial characterization of the transcriptomes from these two species. Here, further analyses of a larger dataset and assemblies including both 454 and capillary sequences were performed and defense related genes with differential transcript abundance (GDTA) in canker versus healthy stem tissues were identified.ResultsOver one and a half million cDNA reads were assembled into 34,800 transcript contigs from American chestnut and 48,335 transcript contigs from Chinese chestnut. Chestnut cDNA showed higher coding sequence similarity to genes in other woody plants than in herbaceous species. The number of genes tagged, the length of coding sequences, and the numbers of tagged members within gene families showed that the cDNA dataset provides a good resource for studying the American and Chinese chestnut transcriptomes. In silico analysis of transcript abundance identified hundreds of GDTA in canker versus healthy stem tissues. A significant number of additional DTA genes involved in the defense-response not reported in a previous study were identified here. These DTA genes belong to various pathways involving cell wall biosynthesis, reactive oxygen species (ROS), salicylic acid (SA), ethylene, jasmonic acid (JA), abscissic acid (ABA), and hormone signalling. DTA genes were also identified in the hypersensitive response and programmed cell death (PCD) pathways. These DTA genes are candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica.ConclusionsOur data allowed the identification of many genes and gene network candidates for host resistance to the chestnut blight fungus, Cryphonectria parasitica. The similar set of GDTAs in American chestnut and Chinese chestnut suggests that the variation in sensitivity to this pathogen between these species may be the result of different timing and amplitude of the response of the two to the pathogen infection. Resources developed in this study are useful for functional genomics, comparative genomics, resistance breeding and phylogenetics in the Fagaceae.
Stimuli-responsive materials are desired for a wide range of applications. Here, we report the design and fabrication of all-organic, stimuli-responsive polymer composites using electrospun nanofibers as the filler. The incorporation of 4 wt % of filler into the polymer matrix increased the tensile storage modulus by 2 orders of magnitude. Upon exposure to water, the filler fibers plasticize and no longer provide mechanical reinforcement. The tensile storage modulus subsequently diminishes 2 orders of magnitude to the value of the neat matrix polymer. M aterials that can change their mechanical properties on command upon exposure to specific stimuli are desired for a wide variety of applications, including drug delivery, sensors, actuators, and shape-memory materials. 1−7 Many different strategies have been developed to impart stimuliresponsive properties into soft and hard materials upon exposure to a variety of stimuli. 8 One of the most interesting approaches to dynamic materials is using stimuli-responsive filler materials for polymer composites. Because the filler is responsible for the dynamic response, it can be blended with a wide variety of polymers to impart stimuli-responsive properties to materials that are otherwise mechanically static. 9,10 As an example, Rowan and colleagues demonstrated significant mechanical switching in a variety of polymers using cellulose nanowhiskers as filler for polymer nanocomposites inspired by the dermis of a sea cucumber. 11−14 Here, we report all-organic, stimuli-responsive polymer composites fabricated using an electrospun mat of poly(vinyl alcohol) (PVA) as the filler, which undergoes a 2 orders of magnitude change in the storage modulus upon exposure to water.Electrospinning uses electrostatic forces to produce continuous polymer nanofibers that have been used for a variety of applications from cell scaffolds to filtration membranes and electronic devices to drug delivery vehicles. 15,16 In electrospinning, fibers are generated by applying an electric field between a polymer solution and a grounded collector. When the electrostatic force overcomes the surface tension of the polymer solution, a stable jet or "Taylor cone" can be formed. As the jet travels toward the collector, it is constantly subjected to a stretching movement, producing nanofibers of tunable diameter. 17 Outside of the uses for the fibrous mat, nanofibers fabricated via electrospinning have also been used as the filler component in polymer nanocomposite materials. 18,19 The incorporation of electrospun nanofibers into a polymer matrix was found to increase the strength of the composite films compared to the corresponding neat polymers. More recently, stimuli-responsive polymer composites have been fabricated from electrospun mats. Luo and Mather have demonstrated shape memory and actuation properties of electrospun polymer composites using poly(ε-carprolactone) and carbon nanofibers, respectively, as filler materials. 20,21 To the best of the authors' knowledge, a controlled change in material modu...
A better understanding of the degradation modes and rates for photovoltaic (PV) modules is necessary to optimize and extend the lifetime of these modules. Lifetime and degradation science (L&DS) is used to understand degradation modes, mechanisms and rates of materials, components and systems to predict lifetime of PV modules. A PV module lifetime and degradation science (PVM L&DS) model is an essential component to predict lifetime and mitigate degradation of PV modules using reproducible open data science. Previously published accelerated testing data from Underwriter Laboratories on PV modules with fluorinated polyester backsheets, which included eight modules that were exposed up to 4000 hrs of damp heat (85% relative humidity at 85 • C) and eight exposed up to 4000 hrs of ultraviolet light (80 W/m 2 of 280-400 nm wavelengths at 60 • C) (UV preconditioning) were used to determine statistically significant relationships between the applied stresses and measured responses. There were 15 different variables tracking aspects of system performance, degradation mechanisms, component metrics and time. Modules were analyzed for three system performance metrics (fill factor, peak power, and wet insulation). The results were statistically analyzed to identify variable transformations, statistically significant relationships (SSRs) and to develop the PVM L&DS model informed by a generalization of structural equation modeling techniques. The SSRs and significant model coefficients, combined with domain analytics, incorporating materials science, chemistry, and physics expertise, produced a pathway diagram ranking the variables' impact on the system performance, which were iteratively examined using sound statistical analysis and diagnostics. The SSRs determined from the damp heat exposure for the system response of Pmax corresponded to the degradation pathway of polyester terephthalate (PET) and ethylene vinyl acetate (EVA) hydrolysis. A linear change point for the damp heat exposure with the system response of Pmax was determined to be 1890 hrs. The UV preconditioning exposure did not induce sufficient degradation shown by the quality of the R 2 values for many of the best fitting models. This exemplifies the development of a methodology to determine rank ordered lifetime and degradation pathways present in modules and their effects on module performance over lifetime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.