Objective: Neurostimulation is an emerging treatment for patients with medically refractory epilepsy, which is used to suppress, prevent, and terminate seizure activity. Unfortunately, after implantation and despite best clinical practice, most patients continue to have persistent seizures even after years of empirical optimization. The objective of this study is to determine optimal spatial and amplitude properties of neurostimulation in inhibiting epileptiform activity in an acute hippocampal seizure model. Methods: We performed high-throughput testing of high-frequency focal brain stimulation in the acute intrahippocampal kainic acid mouse model of temporal lobe epilepsy. We evaluated combinations of six anatomic targets and three stimulus amplitudes. Results: We found that the spike-suppressive effects of high-frequency neurostimulation are highly dependent on the stimulation amplitude and location, with higher amplitude stimulation being significantly more effective. Epileptiform spiking activity was significantly reduced with ipsilateral 250 microamp stimulation of the CA1 and CA3 hippocampal regions with 21.5% and 22.2% reductions, respectively. In contrast, we found that spiking frequency and amplitude significantly increased with stimulation of the ventral hippocampal commissure. We further found spatial differences with broader effects from CA1 versus CA3 stimulation. Significance: These findings demonstrate that the effects of therapeutic neurostimulation in an acute hippocampal seizure model are highly dependent on the location of stimulation and stimulus amplitude. We provide a platform to optimize the anti-seizure effects of neurostimulation, and demonstrate that an exploration of the large electrical parameter and location space can improve current modalities for treating epilepsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.